Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis

Abstract

Protein synthesis activity is abnormally enhanced in cancer cells to support their uncontrolled growth. However, this process needs to be tightly restricted under metabolic stress-a condition often found within the tumor microenvironment-to preserve cell viability. mTORC1 is critical to link protein synthesis activity to nutrient and oxygen levels, in part by controlling the 4E-BP1-eIF4E axis. Whereas mTORC1 and eIF4E are known pro-tumorigenic factors, whose expression or activity is increased in numerous cancers, the role of 4E-BP1 in cancer is not yet definitive. On the one hand, 4E-BP1 has tumor suppressor activity by inhibiting eIF4E and, thus, blocking mRNA translation and proliferation. This is corroborated by elevated levels of phosphorylated and hence inactive 4E-BP1, which are detected in various cancers. On the other hand, 4E-BP1 has pro-tumorigenic functions as it promotes tumor adaptation to metabolic and genotoxic stress by selectively enhancing or preventing the translation of specific transcripts. Here we describe the molecular and cellular functions of 4E-BP1 and highlight the distinct roles of 4E-BP1 in cancer depending on the microenvironmental context of the tumor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

(p-)4E-BP1:

(Phosphorylated) Eukaryotic initiation factor 4E-binding protein 1

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

asTORi:

Active-site TOR inhibitor

ATM:

Ataxia telangiectasia mutated

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

BNIP:

BCL2/adenovirus E1B 19-kDa protein-interacting protein

BRAF:

B-Raf proto-oncogene, serine/threonine kinase

CDK1,2:

Cyclin dependent kinases 1, 2

CREF:

Cloned rat embryo fibroblast

DNA:

Desoxyribonucleic acid

EGFR:

epidermal growth factor receptor

eIF3:

Eukaryotic initiation factor 3

eIF4E,A,G,F:

Eukaryotic initiation factor 4 E, A, G, F

EMT:

Epithelial-mesenchymal transition

ERK:

Extracellular signal-regulated kinase

FGF2:

Fibroblast growth factor 2

Gas2:

Growth arrest-specific protein 2

GSK3:

Glycogen synthase kinase 3

GTP:

Guanosine triphosphate

HIF-1α:

Hypoxia-inducable factor 1-α

IKKβ:

Inhibitor of kappa light polypeptide gene enhancer in B-cells kinase beta

IRES:

Internal ribosome entry sites

LKB1:

Liver kinase B 1

MAPK:

Mitogen-activated protein kinase

MEF:

Mouse embryonic fibroblast

MMP9:

Matrix metalloproteinase 9

(m)RNA:

(Messenger) ribonucleic acid

mTOR:

Mammalian target of rapamycin

mTORC1, 2:

mTOR complex 1, 2

ODC:

Ornithine decarboxylase

PABP:

Poly-A-binding protein

PA:

Phosphatidic acid

PDGFRB:

platelet-derived growth factor receptor, beta polypeptide

PI3K:

Phosphatidyl-inositide-3 kinase

PML:

Promyelocytic leukemia

PTEN:

Phosphatase and tensin homolog

Raptor:

Regulatory-associated protein of mTOR

REDD1:

Regulated in development and DNA damage response 1

Rheb:

Ras homolog enriched in brain

RSK1:

Ribosomal S6 kinase 1

S6K1,2:

Ribosomal protein S6 kinase 1, 2

shRNA:

Short-hairpin RNA

TNFα:

Tumor necrosis factor α

TNM:

tumor-nodes-metastasis classification

TOP:

Terminal oligopyrimidine tract

TSC:

Tuberous sclerosis complex

UTR:

Untranslated region

v-ATPase:

Vacuolar H+- ATPase

VEGF:

Vascular endothelial growth factor.

References

  1. Silvera D, Formenti SC, Schneider RJ . Translational control in cancer. Nat Rev Cancer 2010; 10: 254–266.

    CAS  PubMed  Google Scholar 

  2. Topisirovic I, Sonenberg N . Translation and cancer. Biochim Biophys Acta 2015; 1849: 751–752.

    CAS  PubMed  Google Scholar 

  3. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A . The ever-evolving role of mTOR in translation. Semin Cell Dev Biol 2014; 36: 102–112.

    CAS  PubMed  Google Scholar 

  5. Dai N, Rapley J, Angel M, Yanik MF, Blower MD, Avruch J . mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev 2011; 25: 1159–1172.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fonseca BD, Zakaria C, Jia J-J, Graber TE, Svitkin Y, Tahmasebi S et al. La-related Protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR Complex 1 (mTORC1). J Biol Chem 2015; 290: 15996–16020.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Grunewald TGP, Herbst SM, Heinze J, Burdach S . Understanding tumor heterogeneity as functional compartments—superorganisms revisited. J Transl Med 2011; 9: 79.

    PubMed  PubMed Central  Google Scholar 

  8. Leprivier G, Rotblat B, Khan D, Jan E, Sorensen PH . Stress-mediated translational control in cancer cells. Biochim Biophys Acta 2015; 1849: 845–860.

    CAS  PubMed  Google Scholar 

  9. Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence JC et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 1994; 371: 762–767.

    CAS  PubMed  Google Scholar 

  10. Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N . 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem 1998; 273: 14002–14007.

    CAS  PubMed  Google Scholar 

  11. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK . Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 1999; 3: 707–716.

    CAS  PubMed  Google Scholar 

  12. Siddiqui N, Tempel W, Nedyalkova L, Volpon L, Wernimont AK, Osborne MJ et al. Structural insights into the allosteric effects of 4EBP1 on the eukaryotic translation initiation factor eIF4E. J Mol Biol 2012; 415: 781–792.

    CAS  PubMed  Google Scholar 

  13. Jackson RJ, Hellen CUT, Pestova TV . The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11: 113–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mader S, Lee H, Pause A, Sonenberg N . The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 1995; 15: 4990–4997.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laplante M, Sabatini DM . mTOR signaling at a glance. J Cell Sci 2009; 122: 3589–3594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laplante M, Sabatini DM . mTOR signaling. Cold Spring Harb Perspect Biol 2012; 4: pii: a011593. doi: 10.1101/cshperspect.a011593.

    Article  CAS  Google Scholar 

  17. Laplante M, Sabatini DM . Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013; 126: 1713–1719.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bidinosti M, Martineau Y, Frank F, Sonenberg N . Repair of isoaspartate formation modulates the interaction of deamidated 4E-BP2 with mTORC1 in brain. J Biol Chem 2010; 285: 19402–19408.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bidinosti M, Ran I, Sanchez-Carbente MR, Martineau Y, Gingras A-C, Gkogkas C et al. Postnatal deamidation of 4E-BP2 in brain enhances its association with raptor and alters kinetics of excitatory synaptic transmission. Mol Cell 2010; 37: 797–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rousseau D, Gingras AC, Pause A, Sonenberg N . The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 1996; 13: 2415–2420.

    CAS  PubMed  Google Scholar 

  21. Polunovsky VA, Gingras AC, Sonenberg N, Peterson M, Tan A, Rubins JB et al. Translational control of the antiapoptotic function of Ras. J Biol Chem 2000; 275: 24776–24780.

    CAS  PubMed  Google Scholar 

  22. Reiling JH, Sabatini DM . Stress and mTORture signaling. Oncogene 2006; 25: 6373–6383.

    CAS  PubMed  Google Scholar 

  23. Thorpe LM, Yuzugullu H, Zhao JJ . PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15: 7–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shaw RJ, Cantley LC . Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441: 424–430.

    CAS  PubMed  Google Scholar 

  25. Dhillon AS, Hagan S, Rath O, Kolch W . MAP kinase signalling pathways in cancer. Oncogene 2007; 26: 3279–3290.

    CAS  PubMed  Google Scholar 

  26. Hardie DG, Ross FA, Hawley SA . AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13: 251–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoki K, Zhu T, Guan K-L . TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–590.

    CAS  PubMed  Google Scholar 

  28. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110: 177–189.

    Article  CAS  PubMed  Google Scholar 

  30. Schalm SS, Fingar DC, Sabatini DM, Blenis J . TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 2003; 13: 797–806.

    Article  CAS  PubMed  Google Scholar 

  31. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan K-L . Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 2004; 18: 1533–1538.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6: 91–99.

    CAS  PubMed  Google Scholar 

  33. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329–3335.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Morita M, Gravel S-P, Chénard V, Sikström K, Zheng L, Alain T et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013; 18: 698–711.

    CAS  PubMed  Google Scholar 

  35. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004; 18: 2893–2904.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reiling JH, Hafen E . The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 2004; 18: 2879–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Corradetti MN, Inoki K, Guan K-L . The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem 2005; 280: 9769–9772.

    CAS  PubMed  Google Scholar 

  38. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW . Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008; 22: 239–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 2006; 442: 779–785.

    CAS  PubMed  Google Scholar 

  40. Li Y, Wang Y, Kim E, Beemiller P, Wang C-Y, Swanson J et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 2007; 282: 35803–35813.

    CAS  PubMed  Google Scholar 

  41. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM . mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011; 334: 678–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM . Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150: 1196–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM . Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng Z, Zhang H, Levine AJ, Jin S . The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 2005; 102: 8204–8209.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y et al. Regulation of PTEN transcription by p53. Mol Cell 2001; 8: 317–325.

    CAS  PubMed  Google Scholar 

  47. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955–968.

    CAS  PubMed  Google Scholar 

  48. Lee D-F, Kuo H-P, Chen C-T, Hsu J-M, Chou C-K, Wei Y et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 2007; 130: 440–455.

    CAS  PubMed  Google Scholar 

  49. Foster DA . Regulation of mTOR by phosphatidic acid? Cancer Res 2007; 67: 1–4.

    CAS  PubMed  Google Scholar 

  50. Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA . Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 2009; 29: 1411–1420.

    CAS  PubMed  Google Scholar 

  51. Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013; 493: 679–683.

    CAS  PubMed  Google Scholar 

  52. Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. De Benedetti A, Graff JR . eIF-4E expression and its role in malignancies and metastases. Oncogene 2004; 23: 3189–3199.

    CAS  PubMed  Google Scholar 

  54. Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H et al. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 2007; 28: 501–512.

    CAS  PubMed  Google Scholar 

  55. Svitkin YV, Herdy B, Costa-Mattioli M, Gingras A-C, Raught B, Sonenberg N . Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 2005; 25: 10556–10565.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shantz LM, Hu RH, Pegg AE . Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Res 1996; 56: 3265–3269.

    CAS  PubMed  Google Scholar 

  57. Koromilas AE, Lazaris-Karatzas A, Sonenberg N . mRNAs containing extensive secondary structure in their 5’ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 1992; 11: 4153–4158.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pelletier J, Sonenberg N . The involvement of mRNA secondary structure in protein synthesis. Biochem Cell Biol Biochim Biol Cell 1987; 65: 576–581.

    CAS  Google Scholar 

  59. Kozak M . An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 1991; 115: 887–903.

    CAS  PubMed  Google Scholar 

  60. Thach RE . Cap recap: the involvement of eIF-4F in regulating gene expression. Cell 1992; 68: 177–180.

    CAS  PubMed  Google Scholar 

  61. Rhoads RE . Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem 1993; 268: 3017–3020.

    CAS  PubMed  Google Scholar 

  62. Geballe AP, Morris DR . Initiation codons within 5’-leaders of mRNAs as regulators of translation. Trends Biochem Sci 1994; 19: 159–164.

    CAS  PubMed  Google Scholar 

  63. Morley SJ . Signal transduction mechanisms in the regulation of protein synthesis. Mol Biol Rep 1994; 19: 221–231.

    CAS  PubMed  Google Scholar 

  64. Gingras AC, Raught B, Sonenberg N . eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913–963.

    CAS  PubMed  Google Scholar 

  65. Zimmer SG, DeBenedetti A, Graff JR . Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. Anticancer Res 2000; 20: 1343–1351.

    CAS  PubMed  Google Scholar 

  66. Graff JR, Zimmer SG . Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 2003; 20: 265–273.

    CAS  PubMed  Google Scholar 

  67. Graff JR, Konicek BW, Carter JH, Marcusson EG . Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008; 68: 631–634.

    CAS  PubMed  Google Scholar 

  68. Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 1995; 270: 21176–21180.

    CAS  PubMed  Google Scholar 

  69. Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N . Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 1996; 93: 1065–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kevil C, Carter P, Hu B, DeBenedetti A . Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene 1995; 11: 2339–2348.

    CAS  PubMed  Google Scholar 

  71. Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS . Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer J Int Cancer 1996; 65: 785–790.

    CAS  Google Scholar 

  72. Fingar DC, Blenis J . Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23: 3151–3171.

    CAS  PubMed  Google Scholar 

  73. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J . mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 2004; 24: 200–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J . Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002; 16: 1472–1487.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM . A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012; 485: 109–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Meyuhas O . Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem FEBS 2000; 267: 6321–6330.

    CAS  Google Scholar 

  77. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485: 55–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Truitt ML, Conn CS, Shi Z, Pang X, Tokuyasu T, Coady AM et al. Differential requirements for eIF4E dose in normal development and cancer. Cell 2015; 162: 59–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 2009; 139: 149–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abraham RT, Wiederrecht GJ . Immunopharmacology of rapamycin. Annu Rev Immunol 1996; 14: 483–510.

    CAS  PubMed  Google Scholar 

  81. Braun-Dullaeus RC, Mann MJ, Seay U, Zhang L, von Der Leyen HE, Morris RE et al. Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arterioscler Thromb Vasc Biol 2001; 21: 1152–1158.

    CAS  PubMed  Google Scholar 

  82. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP . Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 2000; 14: 2712–2724.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Miron M, Verdú J, Lachance PE, Birnbaum MJ, Lasko PF, Sonenberg N . The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nat Cell Biol 2001; 3: 596–601.

    CAS  PubMed  Google Scholar 

  84. Dowling RJO, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2010; 328: 1172–1176.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV . Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 2004; 279: 3327–3339.

    CAS  PubMed  Google Scholar 

  86. Nemes K, Sebestyén A, Márk A, Hajdu M, Kenessey I, Sticz T et al. Mammalian target of rapamycin (mTOR) activity dependent phospho-protein expression in childhood acute lymphoblastic leukemia (ALL). PloS One 2013; 8: e59335.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen W, Drakos E, Grammatikakis I, Schlette EJ, Li J, Leventaki V et al. mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer 2010; 9: 292.

    PubMed  PubMed Central  Google Scholar 

  88. De Martino MC, Feelders RA, de Herder WW, van Koetsveld PM, Dogan F, Janssen JA et al. Characterization of the mTOR pathway in human normal adrenal and adrenocortical tumors. Endocr Relat Cancer 2014; 21: 601–613.

    CAS  PubMed  Google Scholar 

  89. Li N, Zhong M, Song M . Expression of phosphorylated mTOR and its regulatory protein is related to biological behaviors of ameloblastoma. Int J Clin Exp Pathol 2012; 5: 660–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lahat G, Dhuka AR, Hallevi H, Xiao L, Zou C, Smith KD et al. Angiosarcoma: clinical and molecular insights. Ann Surg 2010; 251: 1098–1106.

    PubMed  Google Scholar 

  91. Italiano A, Chen C-L, Thomas R, Breen M, Bonnet F, Sevenet N et al. Alterations of the p53 and PIK3CA/AKT/mTOR pathways in angiosarcomas: a pattern distinct from other sarcomas with complex genomics. Cancer 2012; 118: 5878–5887.

    CAS  PubMed  Google Scholar 

  92. Korkolopoulou P, Levidou G, El-Habr EA, Piperi C, Adamopoulos C, Samaras V et al. Phosphorylated 4E-binding protein 1 (p-4E-BP1): a novel prognostic marker in human astrocytomas. Histopathology 2012; 61: 293–305.

    PubMed  Google Scholar 

  93. Schultz L, Albadine R, Hicks J, Jadallah S, DeMarzo AM, Chen Y-B et al. Expression status and prognostic significance of mammalian target of rapamycin pathway members in urothelial carcinoma of urinary bladder after cystectomy. Cancer 2010; 116: 5517–5526.

    PubMed  Google Scholar 

  94. Nishikawa M, Miyake H, Behnsawy HM, Fujisawa M . Significance of 4E-binding protein 1 as a therapeutic target for invasive urothelial carcinoma of the bladder. Urol Oncol 2015; 33: 166.e9–15.

    CAS  Google Scholar 

  95. Chaux A, Compérat E, Varinot J, Hicks J, Lecksell K, Solus J et al. High levels of phosphatase and tensin homolog expression are associated with tumor progression, tumor recurrence, and systemic metastases in pT1 urothelial carcinoma of the bladder: a tissue microarray study of 156 patients treated by transurethral resection. Urology 2013; 81: 116–122.

    PubMed  Google Scholar 

  96. Rojo F, Najera L, Lirola J, Jiménez J, Guzmán M, Sabadell MD et al. 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 2007; 13: 81–89.

    CAS  PubMed  Google Scholar 

  97. Zhou X, Tan M, Stone Hawthorne V, Klos KS, Lan K-H, Yang Y et al. Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 2004; 10: 6779–6788.

    CAS  PubMed  Google Scholar 

  98. Karlsson E, Waltersson MA, Bostner J, Pérez-Tenorio G, Olsson B, Hallbeck A-L et al. High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosomes Cancer 2011; 50: 775–787.

    CAS  PubMed  Google Scholar 

  99. Karlsson E, Pérez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T et al. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res 2013; 15: R96.

    PubMed  PubMed Central  Google Scholar 

  100. Wang Z, Zheng T, Wu Q, Wang J, Wu C, Wang J . Immunohistochemical analysis of the mTOR pathway in intrahepatic cholangiocarcinoma. Neoplasma 2012; 59: 137–141.

    CAS  PubMed  Google Scholar 

  101. Ruys AT, Groot Koerkamp B, Wiggers JK, Klümpen H-J, ten Kate FJ, van Gulik TM . Prognostic biomarkers in patients with resected cholangiocarcinoma: a systematic review and meta-analysis. Ann Surg Oncol 2014; 21: 487–500.

    PubMed  Google Scholar 

  102. Zhang Y-J, Dai Q, Sun D-F, Xiong H, Tian X-Q, Gao F-H et al. mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol 2009; 16: 2617–2628.

    PubMed  Google Scholar 

  103. Chao M-W, Wang L-T, Lai C-Y, Yang X-M, Cheng Y-W, Lee K-H et al. eIF4E binding protein 1 expression is associated with clinical survival outcomes in colorectal cancer. Oncotarget 2015; 6: 24092–24104.

    PubMed  PubMed Central  Google Scholar 

  104. Rice LW, Stone RL, Xu M, Galgano M, Stoler MH, Everett EN et al. Biologic targets for therapeutic intervention in endometrioid endometrial adenocarcinoma and malignant mixed müllerian tumors. Am J Obstet Gynecol 2006; 194: 1119–1126.

    CAS  PubMed  Google Scholar 

  105. Darb-Esfahani S, Faggad A, Noske A, Weichert W, Buckendahl A-C, Müller B et al. Phospho-mTOR and phospho-4EBP1 in endometrial adenocarcinoma: association with stage and grade in vivo and link with response to rapamycin treatment in vitro. J Cancer Res Clin Oncol 2009; 135: 933–941.

    CAS  PubMed  Google Scholar 

  106. Salehi Z, Mashayekhi F . Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem 2006; 39: 404–409.

    CAS  PubMed  Google Scholar 

  107. Jiao X, Pan J, Qian J, Luo T, Wang Z, Yu G et al. Overexpression of p-4ebp1 in Chinese gastric cancer patients and its correlation with prognosis. Hepatogastroenterology 2013; 60: 921–926.

    CAS  PubMed  Google Scholar 

  108. Peng J, Fang Y, Tao Y, Li K, Su T, Nong Y et al. Mechanisms of GOLPH3 associated with the progression of gastric cancer: a preliminary study. PloS One 2014; 9: e107362.

    PubMed  PubMed Central  Google Scholar 

  109. Kasajima A, Pavel M, Darb-Esfahani S, Noske A, Stenzinger A, Sasano H et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2011; 18: 181–192.

    CAS  PubMed  Google Scholar 

  110. Martín ME, Pérez MI, Redondo C, Alvarez MI, Salinas M, Fando JL . 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol 2000; 32: 633–642.

    PubMed  Google Scholar 

  111. Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S, Wiencke JK et al. PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro-Oncol 2012; 14: 1146–1152.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Clark C, Shah S, Herman-Ferdinandez L, Ekshyyan O, Abreo F, Rong X et al. Teasing out the best molecular marker in the AKT/mTOR pathway in head and neck squamous cell cancer patients. Laryngoscope 2010; 120: 1159–1165.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sunavala-Dossabhoy G, Palaniyandi S, Clark C, Nathan C-AO, Abreo FW, Caldito G . Analysis of eIF4E and 4EBP1 mRNAs in head and neck cancer. Laryngoscope 2011; 121: 2136–2141.

    CAS  PubMed  Google Scholar 

  114. Demicco EG, Torres KE, Ghadimi MP, Colombo C, Bolshakov S, Hoffman A et al. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mod Pathol 2012; 25: 212–221.

    CAS  PubMed  Google Scholar 

  115. Righi L, Volante M, Rapa I, Tavaglione V, Inzani F, Pelosi G et al. Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung. Endocr Relat Cancer 2010; 17: 977–987.

    CAS  PubMed  Google Scholar 

  116. Roh MS, Lee JH, Kang KW, Nam H-Y, Jung SB, Kim K et al. Phosphorylated 4E-binding protein 1 expression is associated with poor prognosis in small-cell lung cancer. Virchows Arch Int J Pathol 2015; 467: 667–673.

    CAS  Google Scholar 

  117. Lee HW, Lee EH, Lee JH, Kim J-E, Kim S-H, Kim TG et al. Prognostic significance of phosphorylated 4E-binding protein 1 in non-small cell lung cancer. Int J Clin Exp Pathol 2015; 8: 3955–3962.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kuang X, Shen J, Wong PKY, Yan M . Deregulation of mTOR signaling is involved in thymic lymphoma development in Atm-/- mice. Biochem Biophys Res Commun 2009; 383: 368–372.

    CAS  PubMed  Google Scholar 

  119. Chen S-J, Nakahara T, Takahara M, Kido M, Dugu L, Uchi H et al. Activation of the mammalian target of rapamycin signalling pathway in epidermal tumours and its correlation with cyclin-dependent kinase 2. Br J Dermatol 2009; 160: 442–445.

    PubMed  Google Scholar 

  120. O’Reilly KE, Warycha M, Davies MA, Rodrik V, Zhou XK, Yee H et al. Phosphorylated 4E-BP1 is associated with poor survival in melanoma. Clin Cancer Res 2009; 15: 2872–2878.

    PubMed  PubMed Central  Google Scholar 

  121. Perrone F, Jocollè G, Pennati M, Deraco M, Baratti D, Brich S et al. Receptor tyrosine kinase and downstream signalling analysis in diffuse malignant peritoneal mesothelioma. Eur J Cancer 2010; 46: 2837–2848.

    CAS  PubMed  Google Scholar 

  122. Chen J, Hu C-F, Hou J-H, Shao Q, Yan L-X, Zhu X-F et al. Epstein-Barr virus encoded latent membrane protein 1 regulates mTOR signaling pathway genes which predict poor prognosis of nasopharyngeal carcinoma. J Transl Med 2010; 8: 30.

    PubMed  PubMed Central  Google Scholar 

  123. Wang W, Wen Q, Xu L, Xie G, Li J, Luo J et al. Activation of Akt/mTOR pathway is associated with poor prognosis of nasopharyngeal carcinoma. PloS One 2014; 9: e106098.

    PubMed  PubMed Central  Google Scholar 

  124. Iżycka-Świeszewska E, Drożyńska E, Rzepko R, Kobierska-Gulida G, Grajkowska W, Perek D et al. Analysis of PI3K/AKT/mTOR signalling pathway in high risk neuroblastic tumours. Pol J Pathol 2010; 61: 192–198.

    PubMed  Google Scholar 

  125. Castellvi J, Garcia A, Rojo F, Ruiz-Marcellan C, Gil A, Baselga J et al. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer 2006; 107: 1801–1811.

    CAS  PubMed  Google Scholar 

  126. No JH, Jeon Y-T, Park I-A, Kim Y-B, Kim JW, Park N-H et al. Activation of mTOR signaling pathway associated with adverse prognostic factors of epithelial ovarian cancer. Gynecol Oncol 2011; 121: 8–12.

    CAS  PubMed  Google Scholar 

  127. Chen S, Nakahara T, Uchi H, Takeuchi S, Takahara M, Kido M et al. Immunohistochemical analysis of the mammalian target of rapamycin signalling pathway in extramammary Paget’s disease. Br J Dermatol 2009; 161: 357–363.

    CAS  PubMed  Google Scholar 

  128. Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM et al. eIF4E Activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 2009; 69: 3866–3873.

    CAS  PubMed  Google Scholar 

  129. Dai B, Kong YY, Ye DW, Ma CG, Zhou X, Yao XD . Activation of the mammalian target of rapamycin signalling pathway in prostate cancer and its association with patient clinicopathological characteristics. BJU Int 2009; 104: 1009–1016.

    CAS  PubMed  Google Scholar 

  130. Kremer CL, Klein RR, Mendelson J, Browne W, Samadzedeh LK, Vanpatten K et al. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate 2006; 66: 1203–1212.

    CAS  PubMed  Google Scholar 

  131. Schultz L, Chaux A, Albadine R, Hicks J, Kim JJ, De Marzo AM et al. Immunoexpression status and prognostic value of mTOR and hypoxia-induced pathway members in primary and metastatic clear cell renal cell carcinomas. Am J Surg Pathol 2011; 35: 1549–1556.

    PubMed  PubMed Central  Google Scholar 

  132. Haddad AQ, Kapur P, Singla N, Raman JD, Then MT, Nuhn P et al. Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma. Cancer 2015; 121: 43–50.

    CAS  PubMed  Google Scholar 

  133. Chaux A, Albadine R, Schultz L, Hicks J, Carducci MA, Argani P et al. Dysregulation of the mammalian target of rapamycin pathway in chromophobe renal cell carcinomas. Hum Pathol 2013; 44: 2323–2330.

    CAS  PubMed  Google Scholar 

  134. Petricoin EF, Espina V, Araujo RP, Midura B, Yeung C, Wan X et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 2007; 67: 3431–3440.

    CAS  PubMed  Google Scholar 

  135. Cen L, Arnoczky KJ, Hsieh F-C, Lin H-J, Qualman SJ, Yu S et al. Phosphorylation profiles of protein kinases in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 2007; 20: 936–946.

    CAS  PubMed  Google Scholar 

  136. Yamada Y, Kohashi K, Fushimi F, Takahashi Y, Setsu N, Endo M et al. Activation of the Akt-mTOR pathway and receptor tyrosine kinase in patients with solitary fibrous tumors. Cancer 2014; 120: 864–876.

    CAS  PubMed  Google Scholar 

  137. Kouvaraki MA, Liakou C, Paraschi A, Dimas K, Patsouris E, Tseleni-Balafouta S et al. Activation of mTOR signaling in medullary and aggressive papillary thyroid carcinomas. Surgery 2011; 150: 1258–1265.

    PubMed  Google Scholar 

  138. van Veelen W, Korsse SE, van de Laar L, Peppelenbosch MP . The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene 2011; 30: 2289–2303.

    CAS  PubMed  Google Scholar 

  139. Faubert B, Vincent EE, Poffenberger MC, Jones RG . The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett 2015; 356: 165–170.

    CAS  PubMed  Google Scholar 

  140. Samuels Y, Diaz LA, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005; 7: 561–573.

    CAS  PubMed  Google Scholar 

  141. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.

    CAS  PubMed  Google Scholar 

  142. Luo J, Manning BD, Cantley LC . Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4: 257–262.

    CAS  PubMed  Google Scholar 

  143. Altomare DA, Testa JR . Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24: 7455–7464.

    CAS  PubMed  Google Scholar 

  144. Jiang H, Vogt PK . Constitutively active Rheb induces oncogenic transformation. Oncogene 2008; 27: 5729–5740.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N . eIF4E—from translation to transformation. Oncogene 2004; 23: 3172–3179.

    CAS  PubMed  Google Scholar 

  146. Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N et al. PTEN: multiple functions in human malignant tumors. Front Oncol 2015; 5: 24.

    PubMed  PubMed Central  Google Scholar 

  147. Hezel AF, Bardeesy N . LKB1; linking cell structure and tumor suppression. Oncogene 2008; 27: 6908–6919.

    CAS  PubMed  Google Scholar 

  148. Lazaris-Karatzas A, Montine KS, Sonenberg N . Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’ cap. Nature 1990; 345: 544–547.

    CAS  PubMed  Google Scholar 

  149. Lazaris-Karatzas A, Smith MR, Frederickson RM, Jaramillo ML, Liu YL, Kung HF et al. Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev 1992; 6: 1631–1642.

    CAS  PubMed  Google Scholar 

  150. Lazaris-Karatzas A, Sonenberg N . The mRNA 5’ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol 1992; 12: 1234–1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Rinker-Schaeffer CW, Graff JR, De Benedetti A, Zimmer SG, Rhoads RE . Decreasing the level of translation initiation factor 4E with antisense RNA causes reversal of ras-mediated transformation and tumorigenesis of cloned rat embryo fibroblasts. Int J Cancer J Int Cancer 1993; 55: 841–847.

    CAS  Google Scholar 

  152. Graff JR, Boghaert ER, De Benedetti A, Tudor DL, Zimmer CC, Chan SK et al. Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int J Cancer J Int Cancer 1995; 60: 255–263.

    CAS  Google Scholar 

  153. Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A . The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer 1995; 64: 27–31.

    CAS  PubMed  Google Scholar 

  154. Anthony B, Carter P, De Benedetti A . Overexpression of the proto-oncogene/translation factor 4E in breast-carcinoma cell lines. Int J Cancer 1996; 65: 858–863.

    CAS  PubMed  Google Scholar 

  155. De Benedetti A, Harris AL . eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 1999; 31: 59–72.

    CAS  PubMed  Google Scholar 

  156. Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J . Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 1999; 18: 2507–2517.

    CAS  PubMed  Google Scholar 

  157. Rosenwald IB, Hutzler MJ, Wang S, Savas L, Fraire AE . Expression of eukaryotic translation initiation factors 4E and 2alpha is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer 2001; 92: 2164–2171.

    CAS  PubMed  Google Scholar 

  158. Wang S, Rosenwald IB, Hutzler MJ, Pihan GA, Savas L, Chen JJ et al. Expression of the eukaryotic translation initiation factors 4E and 2alpha in non-Hodgkin’s lymphomas. Am J Pathol 1999; 155: 247–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang S, Lloyd RV, Hutzler MJ, Rosenwald IB, Safran MS, Patwardhan NA et al. Expression of eukaryotic translation initiation factors 4E and 2alpha correlates with the progression of thyroid carcinoma. Thyroid 2001; 11: 1101–1107.

    CAS  PubMed  Google Scholar 

  160. Li BDL, Gruner JS, Abreo F, Johnson LW, Yu H, Nawas S et al. Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg 2002; 235: 732–738.

    PubMed  PubMed Central  Google Scholar 

  161. Berkel HJ, Turbat-Herrera EA, Shi R, de Benedetti A . Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol Biomark Prev 2001; 10: 663–666.

    CAS  Google Scholar 

  162. Chen C-N, Hsieh F-J, Cheng Y-M, Lee P-H, Chang K-J . Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J Surg Oncol 2004; 86: 22–27.

    CAS  PubMed  Google Scholar 

  163. Thornton S, Anand N, Purcell D, Lee J . Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis. J Mol Med Berl Ger 2003; 81: 536–548.

    CAS  Google Scholar 

  164. Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 2009; 100: 1393–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Thumma SC, Kratzke RA . Translational control: a target for cancer therapy. Cancer Lett 2007; 258: 1–8.

    CAS  PubMed  Google Scholar 

  166. Tejada S, Lobo MVT, García-Villanueva M, Sacristán S, Pérez-Morgado MI, Salinas M et al. Eukaryotic initiation factors (eIF) 2alpha and 4E expression, localization, and phosphorylation in brain tumors. J Histochem Cytochem 2009; 57: 503–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 2004; 5: 553–563.

    CAS  PubMed  Google Scholar 

  168. Cai W, Ye Q, She Q-B . Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail. Oncotarget 2014; 5: 6015–6027.

    PubMed  PubMed Central  Google Scholar 

  169. Petroulakis E, Parsyan A, Dowling RJO, LeBacquer O, Martineau Y, Bidinosti M et al. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell 2009; 16: 439–446.

    CAS  PubMed  Google Scholar 

  170. Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med 2001; 7: 1128–1132.

    CAS  PubMed  Google Scholar 

  171. Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M et al. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res 2012; 72: 6468–6476.

    CAS  PubMed  Google Scholar 

  172. Dubois L, Magagnin MG, Cleven AHG, Weppler SA, Grenacher B, Landuyt W et al. Inhibition of 4E-BP1 sensitizes U87 glioblastoma xenograft tumors to irradiation by decreasing hypoxia tolerance. Int J Radiat Oncol Biol Phys 2009; 73: 1219–1227.

    CAS  PubMed  Google Scholar 

  173. Schalm SS, Blenis J . Identification of a conserved motif required for mTOR signaling. Curr Biol 2002; 12: 632–639.

    CAS  PubMed  Google Scholar 

  174. Tee AR, Proud CG . Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol 2002; 22: 1674–1683.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee VHY, Healy T, Fonseca BD, Hayashi A, Proud CG . Analysis of the regulatory motifs in eukaryotic initiation factor 4E-binding protein 1. FEBS J 2008; 275: 2185–2199.

    CAS  PubMed  Google Scholar 

  176. Eguchi S, Tokunaga C, Hidayat S, Oshiro N, Yoshino K, Kikkawa U et al. Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size. Genes Cells 2006; 11: 757–766.

    CAS  PubMed  Google Scholar 

  177. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999; 13: 1422–1437.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Gingras AC, Raught B, Sonenberg N . Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15: 807–826.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JM is supported by a scholarship in frame of the ‘Deutschlandstipendium’ program of the Bundesministerium für Bildung und Forschung (BMBF) and the LMU Munich. MD is supported by a grant of the ‘Deutsche Stiftung für Junge Erwachsene mit Krebs’. TGPG is supported by a grant from the ‘Verein zur Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der LMU München (WiFoMed)’, the Daimler and Benz Foundation in cooperation with the Reinhard Frank Foundation, by LMU Munich’s Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative, the ‘Mehr LEBEN für krebskranke Kinder – Bettina-Bräu-Stiftung’, the Fritz-Thyssen Foundation (FTF-40.15.0.030MN), the Deutsche Forschungsgemeinschaft (DFG GR3728/2-1) and by the German Cancer Aid (DKH-111886).

Author contributions

JM, BR, TK, GL and TGPG conceived and wrote this paper. All authors contributed in literature survey as well as in drafting of the figures and the tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T G P Grünewald.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musa, J., Orth, M., Dallmayer, M. et al. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 35, 4675–4688 (2016). https://doi.org/10.1038/onc.2015.515

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.515

This article is cited by

Search

Quick links