Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GEP oncogene promotes cell proliferation through YAP activation in ovarian cancer

Abstract

G-protein-coupled receptors (GPCRs) and their ligands function in the progression of human malignancies. Gα12 and Gα13, encoded by GNA12 and GNA13, respectively, are referred to as the GEP oncogene and are implicated in tumor progression. However, the molecular mechanisms by which Gα12/13 activation promotes cancer progression are not fully elucidated. Here, we demonstrate elevated expression of Gα12/13 in human ovarian cancer tissues. Gα12/13 activation did not promote cellular migration in the ovarian cancer cell lines examined. Rather, Gα12/13 activation promoted cell growth. We used a synthetic biology approach using chimeric G proteins and GPCRs activated solely by artificial ligands to selectively trigger signaling pathways downstream of specific G proteins. We found that Gα12/13 promotes proliferation of ovarian cancer cells by activating the transcriptional coactivator YAP, a critical component of the Hippo signaling pathway. Furthermore, we reveal that inhibition of YAP by short hairpin RNA or a specific inhibitor prevented the growth of ovarian cancer cells. Therefore, YAP may be a suitable therapeutic target in ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    PubMed  Google Scholar 

  2. Dorsam RT, Gutkind JS . G-protein-coupled receptors and cancer. Nat Rev Cancer 2007; 7: 79–94.

    Article  CAS  PubMed  Google Scholar 

  3. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466: 869–873.

    Article  CAS  PubMed  Google Scholar 

  4. Xu N, Bradley L, Ambdukar I, Gutkind JS . A mutant alpha subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci USA 1993; 90: 6741–6745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu N, Voyno-Yasenetskaya T, Gutkind JS . Potent transforming activity of the G13 alpha subunit defines a novel family of oncogenes. Biochem Biophys Res Commun 1994; 201: 603–609.

    Article  CAS  PubMed  Google Scholar 

  6. Kelly P, Moeller BJ, Juneja J, Booden MA, Der CJ, Daaka Y et al. The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci USA 2006; 103: 8173–8178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelly P, Stemmle LN, Madden JF, Fields TA, Daaka Y, Casey PJ . A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem 2006; 281: 26483–26490.

    Article  CAS  PubMed  Google Scholar 

  8. Yagi H, Tan W, Dillenburg-Pilla P, Armando S, Amornphimoltham P, Simaan M et al. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal 2011; 4: ra60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gan CP, Patel V, Mikelis CM, Zain RB, Molinolo AA, Abraham MT et al. Heterotrimeric G-protein alpha-12 (Galpha12) subunit promotes oral cancer metastasis. Oncotarget 2014; 5: 9626–9640.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Worzfeld T, Wettschureck N, Offermanns S . G(12)/G(13)-mediated signalling in mammalian physiology and disease. Trends Pharmacol Sci 2008; 29: 582–589.

    Article  CAS  PubMed  Google Scholar 

  11. Pan D . The hippo signaling pathway in development and cancer. Dev Cell 2010; 19: 491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramos A, Camargo FD . The Hippo signaling pathway and stem cell biology. Trends Cell Biol 2012; 22: 339–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao B, Li L, Lei Q, Guan KL . The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 2010; 24: 862–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Cur Biol CB 2007; 17: 2054–2060.

    Article  CAS  Google Scholar 

  15. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130: 1120–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson R, Halder G . The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2014; 13: 63–79.

    Article  CAS  PubMed  Google Scholar 

  17. Harvey KF, Zhang X, Thomas DM . The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13: 246–257.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X . Overexpression of Yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci 2010; 101: 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  19. Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol 2008; 39: 1582–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 2006; 125: 1253–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007; 21: 2747–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012; 150: 780–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014; 25: 831–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fukuhara S, Chikumi H, Gutkind JS . RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 2001; 20: 1661–1668.

    Article  CAS  PubMed  Google Scholar 

  25. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH . The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 2005; 24: 2076–2086.

    Article  CAS  PubMed  Google Scholar 

  27. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26: 1300–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 2013; 13: 412–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 2015; 21: 938–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muppidi JR, Schmitz R, Green JA, Xiao W, Larsen AB, Braun SE et al. Loss of signalling via Galpha13 in germinal centre B-cell-derived lymphoma. Nature 2014; 516: 254–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan AM, Fleming TP, McGovern ES, Chedid M, Miki T, Aaronson SA . Expression cDNA cloning of a transforming gene encoding the wild-type G alpha 12 gene product. Mol Cell Biol 1993; 13: 762–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goldsmith ZG, Ha JH, Jayaraman M, Dhanasekaran DN . Lysophosphatidic acid stimulates the proliferation of ovarian cancer cells via the gep proto-oncogene Galpha(12). Genes Cancer 2011; 2: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang YM, Lee WH, Lee CG, An J, Kim ES, Kim SH et al. Gα12 gep oncogene deregulation of p53-responsive microRNAs promotes epithelial-mesenchymal transition of hepatocellular carcinoma. Oncogene 2015; 34: 2910–2922.

    Article  CAS  PubMed  Google Scholar 

  34. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 2011; 144: 782–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chan EH, Nousianen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH . The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 2005; 24: 2076–2086.

    Article  CAS  PubMed  Google Scholar 

  36. Miller E, Yang J, DeRan M, Wu C, Su AI, Bonamy GM et al. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem Biol 2012; 19: 955–962.

    Article  CAS  PubMed  Google Scholar 

  37. Mo JS, Yu FX, Gong R, Brown JH, Guan KL . Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev 2012; 26: 2138–2143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sudol M, Shields DC, Farooq A . Structures of YAP protein domains reveal promising targets for development of new cancer drugs. Semin Cell Dev Biol 2012; 23: 827–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosenbaum DM, Rasmussen SG, Kobilka BK . The structure and function of G-protein-coupled receptors. Nature 2009; 459: 356–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galandrin S, Oligny-Longpre G, Bouvier M . The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 2007; 28: 423–430.

    Article  CAS  PubMed  Google Scholar 

  41. Rajagopal S, Rajagopal K, Lefkowitz RJ . Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 2010; 9: 373–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yotsumoto F, Yagi H, Suzuki SO, Oki E, Tsujioka H, Hachisuga T et al. Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun 2008; 365: 555–561.

    Article  CAS  PubMed  Google Scholar 

  43. Itamochi H, Kato M, Nishimura M, Oumi N, Oishi T, Shimada M et al. Establishment and characterization of a novel ovarian clear cell adenocarcinoma cell line, TU-OC-1, with a mutation in the PIK3CA gene. Hum Cell 2013; 26: 121–127.

    Article  CAS  PubMed  Google Scholar 

  44. Imai S, Kiyozuka Y, Maeda H, Noda T, Hosick HL . Establishment and characterization of a human ovarian serous cystadenocarcinoma cell line that produces the tumor markers CA-125 and tissue polypeptide antigen. Oncology 1990; 47: 177–184.

    Article  CAS  PubMed  Google Scholar 

  45. Tan W, Martin D, Gutkind JS . The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J Biol Chem 2006; 281: 39542–39549.

    Article  CAS  PubMed  Google Scholar 

  46. Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS . Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res 2004; 64: 5212–5224.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms Emiko Hori, Ms Yoko Miyanari and Research Support Center, Graduate School of Medical Science, Kyushu University for technical supports. This study was supported in part by a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (#24791709 and #26861332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Yagi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagi, H., Asanoma, K., Ohgami, T. et al. GEP oncogene promotes cell proliferation through YAP activation in ovarian cancer. Oncogene 35, 4471–4480 (2016). https://doi.org/10.1038/onc.2015.505

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.505

This article is cited by

Search

Quick links