Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

p19Arf is required for the cellular response to chronic DNA damage

Abstract

The p53 tumor suppressor is a stress sensor, driving cell cycle arrest or apoptosis in response to DNA damage or oncogenic signals. p53 activation by oncogenic signals relies on the p19Arf tumor suppressor, while p53 activation downstream of acute DNA damage is reported to be p19Arf-independent. Accordingly, p19Arf-deficient mouse embryo fibroblasts (MEFs) arrest in response to acute DNA damage. However, p19Arf is required for replicative senescence, a condition associated with an activated DNA damage response, as p19Arf−/− MEFs do not senesce after serial passage. A possible explanation for these seemingly disparate roles for p19Arf is that acute and chronic DNA damage responses are mechanistically distinct. Replicative senescence may result from chronic, low-dose DNA damage responses in which p19Arf has a specific role. We therefore examined the role of p19Arf in cellular responses to chronic, low-dose DNA-damaging agent treatment by maintaining MEFs in low oxygen and administering 0.5 G y γ-irradiation daily or 150 μM hydroxyurea, a replication stress inducer. In contrast to their response to acute DNA damage, p19Arf−/− MEFs exposed to chronic DNA damage do not senesce, revealing a selective role for p19Arf in senescence upon low-level, chronic DNA damage. We show further that p53 pathway activation in p19Arf−/− MEFs exposed to chronic DNA damage is attenuated relative to wild-type MEFs, suggesting a role for p19Arf in fine-tuning p53 activity. However, combined Nutlin3a and chronic DNA-damaging agent treatment is insufficient to promote senescence in p19Arf−/− MEFs, suggesting that the role of p19Arf in the chronic DNA damage response may be partially p53-independent. These data suggest the importance of p19Arf for the cellular response to the low-level DNA damage incurred in culture or upon oncogene expression, providing new insight into how p19Arf serves as a tumor suppressor. Moreover, our study helps reconcile reports suggesting crucial roles for both p19Arf and DNA damage-signaling pathways in tumor suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649–659.

    Article  CAS  Google Scholar 

  2. Sherr CJ, DePinho RA . Cellular senescence: mitotic clock or culture shock? Cell 2000; 102: 407–410.

    Article  CAS  Google Scholar 

  3. Campisi J, d'Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  Google Scholar 

  4. Packer L, Fuehr K . Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 1977; 267: 423–425.

    Article  CAS  Google Scholar 

  5. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN . Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 1995; 92: 4337–4341.

    Article  CAS  Google Scholar 

  6. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274: 7936–7940.

    Article  CAS  Google Scholar 

  7. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003; 5: 741–747.

    Article  CAS  Google Scholar 

  8. Di Micco R, Cicalese A, Fumagalli M, Dobreva M, Verrecchia A, Pelicci PG et al. DNA damage response activation in mouse embryonic fibroblasts undergoing replicative senescence and following spontaneous immortalization. Cell Cycle 2008; 7: 3601–3606.

    Article  CAS  Google Scholar 

  9. Mallette FA, Gaumont-Leclerc MF, Ferbeyre G . The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 2007; 21: 43–48.

    Article  CAS  Google Scholar 

  10. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  Google Scholar 

  11. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  Google Scholar 

  12. Efeyan A, Garcia-Cao I, Herranz D, Velasco-Miguel S, Serrano M . Tumour biology: policing of oncogene activity by p53. Nature 2006; 443: 159.

    Article  CAS  Google Scholar 

  13. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI . The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 2006; 443: 214–217.

    Article  CAS  Google Scholar 

  14. Kamijo T, van de Kamp E, Chong MJ, Zindy F, Diehl JA, Sherr CJ et al. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res 1999; 59: 2464–2469.

    CAS  PubMed  Google Scholar 

  15. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17: 5001–5014.

    Article  CAS  Google Scholar 

  16. Lowe SW, Ruley HE, Jacks T, Housman DE . p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    Article  CAS  Google Scholar 

  17. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587–597.

    Article  CAS  Google Scholar 

  18. Khan SH, Moritsugu J, Wahl GM . Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc Natl Acad Sci USA 2000; 97: 3266–3271.

    Article  CAS  Google Scholar 

  19. Tanaka S, Diffley JF . Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev 2002; 16: 2639–2649.

    Article  CAS  Google Scholar 

  20. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    Article  CAS  Google Scholar 

  21. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  Google Scholar 

  22. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91: 25–34.

    Article  CAS  Google Scholar 

  23. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002; 9: 1031–1044.

    Article  CAS  Google Scholar 

  24. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97: 527–538.

    Article  CAS  Google Scholar 

  25. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    Article  CAS  Google Scholar 

  26. Evangelou K, Bartkova J, Kotsinas A, Pateras IS, Liontos M, Velimezi G et al. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ 2013; 20: 1485–1497.

    Article  CAS  Google Scholar 

  27. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145: 435–446.

    Article  CAS  Google Scholar 

  28. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA et al. Genomic instability in mice lacking histone H2AX. Science 2002; 296: 922–927.

    Article  CAS  Google Scholar 

  29. d'Adda di Fagagna F . Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 2008; 8: 512–522.

    Article  CAS  Google Scholar 

  30. Borel F, Lacroix FB, Margolis RL . Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis. J Cell Sci 2002; 115: 2829–2838.

    CAS  PubMed  Google Scholar 

  31. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  Google Scholar 

  32. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1: 20–26.

    Article  CAS  Google Scholar 

  33. Carlos AR, Escandell JM, Kotsantis P, Suwaki N, Bouwman P, Badie S et al. ARF triggers senescence in Brca2-deficient cells by altering the spectrum of p53 transcriptional targets. Nat Commun 2013; 4: 2697.

    Article  Google Scholar 

  34. Monasor A, Murga M, Lopez-Contreras AJ, Navas C, Gomez G, Pisano DG et al. INK4a/ARF limits the expansion of cells suffering from replication stress. Cell Cycle 2013; 12: 1948–1954.

    Article  CAS  Google Scholar 

  35. Christensen C, Bartkova J, Mistrik M, Hall A, Lange MK, Ralfkiaer U et al. A short acidic motif in ARF guards against mitochondrial dysfunction and melanoma susceptibility. Nat Commun 2014; 5: 5348.

    Article  CAS  Google Scholar 

  36. Lessard F, Morin F, Ivanchuk S, Langlois F, Stefanovsky V, Rutka J et al. The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. Mol Cell 2010; 38: 539–550.

    Article  CAS  Google Scholar 

  37. Kuo ML, den Besten W, Thomas MC, Sherr CJ . Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle 2008; 7: 3378–3387.

    Article  CAS  Google Scholar 

  38. Hinkal G, Parikh N, Donehower LA . Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS One 2009; 4: e6654.

    Article  Google Scholar 

  39. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011; 145: 571–583.

    Article  CAS  Google Scholar 

  40. Valente LJ, Gray DH, Michalak EM, Pinon-Hofbauer J, Egle A, Scott CL et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effect p21, Puma, and Noxa. Cell Rep 2013; 3: 1339–1345.

    Article  CAS  Google Scholar 

  41. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012; 149: 1269–1283.

    Article  CAS  Google Scholar 

  42. Kotsinas A, Papanagnou P, Galanos P, Schramek D, Townsend P, Penninger JM et al. MKK7 and ARF: new players in the DNA damage response scenery. Cell Cycle 2014; 13: 1227–1236.

    Article  CAS  Google Scholar 

  43. Velimezi G, Liontos M, Vougas K, Roumeliotis T, Bartkova J, Sideridou M et al. Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol 2013; 15: 967–977.

    Article  CAS  Google Scholar 

  44. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363–9367.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Charles Sherr for the kind gift of the p19Arf antibody and Nitin Raj and Margot Bowen for critical reading of the manuscript. KBR was funded by an American Cancer Society postdoctoral fellowship 122767-PF-12-195-01-TBG. This work was supported by funding from the American Cancer Society (RSG-06-065-01-MGO), the Leukemia and Lymphoma Society (LLS-1012-09), and the National Institutes of Health (CA140875) to LDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L D Attardi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bieging-Rolett, K., Johnson, T., Brady, C. et al. p19Arf is required for the cellular response to chronic DNA damage. Oncogene 35, 4414–4421 (2016). https://doi.org/10.1038/onc.2015.490

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.490

This article is cited by

Search

Quick links