Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CFTR is a tumor suppressor gene in murine and human intestinal cancer

A Corrigendum to this article was published on 13 February 2017

Abstract

CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid–base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated ApcMin mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc+/+ mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc+/+ Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease-free survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. De Lisle RC, Borowitz D . The cystic fibrosis intestine. Cold Spring Harb Perspect Med 2013; 3: a009753.

    Article  Google Scholar 

  2. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066–1073.

    Article  CAS  Google Scholar 

  3. Pedersen SF, Stock C . Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Res 2013; 73: 1658–1661.

    Article  CAS  Google Scholar 

  4. Neglia JP, FitzSimmons SC, Maisonneuve P, Schöni MH, Schöni-Affolter F, Corey M et al. The risk of cancer among patients with cystic fibrosis. Cystic Fibrosis and Cancer Study Group. N Engl J Med 1995; 332: 494–499.

    Article  CAS  Google Scholar 

  5. McWilliams R, Highsmith WE, Rabe KG, de Andrade M, Tordsen LA, Holtegaard LM et al. Cystic fibrosis transmembrane regulator gene carrier status is a risk factor for young onset pancreatic adenocarcinoma. Gut 2005; 54: 1661–1662.

    Article  CAS  Google Scholar 

  6. Maisonneuve P, Marshall BC, Knapp EA, Lowenfels AB . Cancer risk in cystic fibrosis: a 20-year nationwide study from the United States. J Natl Cancer Inst 2013; 105: 122–129.

    Article  CAS  Google Scholar 

  7. Maisonneuve P, FitzSimmons SC, Neglia JP, Campbell PW III, Lowenfels AB . Cancer risk in nontransplanted and transplanted cystic fibrosis patients: a 10-year study. J Natl Cancer Inst 2003; 95: 381–387.

    Article  Google Scholar 

  8. Gelfond D, Borowitz D . Gastrointestinal complications of cystic fibrosis. Clin Gastroenterol Hepatol 2013; 11: 333–342.

    Article  Google Scholar 

  9. Zhang JT, Jiang XH, Xie C, Cheng H, Da Dong J, Wang Y et al. Downregulation of CFTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer. Biochim Biophys Acta 2013; 1833: 2961–2969.

    Article  CAS  Google Scholar 

  10. Xie C, Jiang XH, Zhang JT, Sun TT, Dong JD, Sanders AJ et al. CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene 2013; 32: 2282–2291, 2291.e1–7.

    Article  CAS  Google Scholar 

  11. Sun TT, Wang Y, Cheng H, Xiao HZ, Xiang JJ, Zhang JT et al. Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer. Biochim Biophys Acta 2014; 1843: 618–628.

    Article  CAS  Google Scholar 

  12. Oh SC, Park YY, Park ES, Lim JY, Kim SM, Kim SB et al. Prognostic gene expression signature associated with two molecularly distinct subtypes of colorectal cancer. Gut 2012; 61: 1291–1298.

    Article  Google Scholar 

  13. Billings JL, Dunitz JM, McAllister S, Herzog T, Bobr A, Khoruts A . Early colon screening of adult patients with cystic fibrosis reveals high incidence of adenomatous colon polyps. J Clin Gastroenterol 2014; 48: e85–e88.

    Article  Google Scholar 

  14. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L et al. Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros 2011; 10 (Suppl 2): S152–S171.

    Article  CAS  Google Scholar 

  15. Starr TK, Allaei R, Silverstein KA, Staggs RA, Sarver AL, Bergemann TL et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 2009; 323: 1747–1750.

    Article  CAS  Google Scholar 

  16. March HN, Rust AG, Wright NA, ten Hoeve J, de Ridder J, Eldridge M et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 2011; 43: 1202–1209.

    Article  CAS  Google Scholar 

  17. Takeda H, Wei Z, Koso H, Rust AG, Yew CC, Mann MB et al. Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression. Nat Genet 2015; 47: 142–150.

    Article  CAS  Google Scholar 

  18. Hodges CA, Cotton CU, Palmert MR, Drumm ML . Generation of a conditional null allele for Cftr in mice. Genesis 2008; 46: 546–552.

    Article  CAS  Google Scholar 

  19. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O et al. An animal model for cystic fibrosis made by gene targeting. Science 1992; 257: 1083–1088.

    Article  CAS  Google Scholar 

  20. Xu Z, Gupta V, Lei D, Holmes A, Carlson E, Gruenert DC . In-frame elimination of exon 10 in Cftrtm1Unc CF mice. Gene 1998; 211: 117–123.

    Article  CAS  Google Scholar 

  21. De Lisle RC, Mueller R, Boyd M . Impaired mucosal barrier function in the small intestine of the cystic fibrosis mouse. J Pediatr Gastroenterol Nutr 2011; 53: 371–379.

    Article  Google Scholar 

  22. Than BL, Goos JA, Sarver AL, O'Sullivan MG, Rod A, Starr TK et al. The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene 2014; 33: 3861–3868.

    Article  CAS  Google Scholar 

  23. de Sousa E, Melo F, Colak S, Buikhuisen J, Koster J, Cameron K et al. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 2011; 9: 476–485.

    Article  Google Scholar 

  24. Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 2011; 8: 511–524.

    Article  Google Scholar 

  25. Muñoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J 2012; 31: 3079–3091.

    Article  Google Scholar 

  26. Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M et al. The intestinal Wnt/TCF signature. Gastroenterology 2007; 132: 628–632.

    Article  CAS  Google Scholar 

  27. De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med 2013; 19: 614–618.

    Article  Google Scholar 

  28. De Lisle RC . Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res 2014; 355: 131–142.

    Article  CAS  Google Scholar 

  29. Clarke LL, Gawenis LR, Bradford EM, Judd LM, Boyle KT, Simpson JE et al. Abnormal Paneth cell granule dissolution and compromised resistance to bacterial colonization in the intestine of CF mice. Am J Physiol Gastrointest Liver Physiol 2004; 286: G1050–G1058.

    Article  CAS  Google Scholar 

  30. Norkina O, Kaur S, Ziemer D, De Lisle RC . Inflammation of the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2004; 286: G1032–G1041.

    Article  CAS  Google Scholar 

  31. Munck A . Cystic fibrosis: evidence for gut inflammation. Int J Biochem Cell Biol 2014; 52: 180–183.

    Article  CAS  Google Scholar 

  32. Juric M, Xiao F, Amasheh S, May O, Wahl K, Bantel H et al. Increased epithelial permeability is the primary cause for bicarbonate loss in inflamed murine colon. Inflamm Bowel Dis 2013; 19: 904–911.

    Article  Google Scholar 

  33. Vij N, Mazur S, Zeitlin PL . CFTR is a negative regulator of NFkappaB mediated innate immune response. PLoS One 2009; 4: e4664.

    Article  Google Scholar 

  34. Chen J, Jiang XH, Chen H, Guo JH, Tsang LL, Yu MK et al. CFTR negatively regulates cyclooxygenase-2-PGE(2) positive feedback loop in inflammation. J Cell Physiol 2012; 227: 2759–2766.

    Article  CAS  Google Scholar 

  35. Burger-van Paassen N, Loonen LM, Witte-Bouma J, Korteland-van Male AM, de Bruijn AC, van der Sluis M et al. Mucin Muc2 deficiency and weaning influences the expression of the innate defense genes Reg3β, Reg3γ and angiogenin-4. PLoS One 2012; 7: e38798.

    Article  CAS  Google Scholar 

  36. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013; 342: 447–453.

    Article  CAS  Google Scholar 

  37. Schütte A, Ermund A, Becker-Pauly C, Johansson ME, Rodriguez-Pineiro AM, Bäckhed F et al. Microbial-induced meprin β cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proc Natl Acad Sci USA 2014; 111: 12396–12401.

    Article  Google Scholar 

  38. Garcia MA, Yang N, Quinton PM . Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest 2009; 119: 2613–2622.

    Article  CAS  Google Scholar 

  39. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 2011; 29: 1120–1127.

    Article  CAS  Google Scholar 

  40. Medema JP, Vermeulen L . Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nat Rev 2011; 474: 318–326.

    CAS  Google Scholar 

  41. Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A et al. Stromal contribution to the colorectal cancer transcriptome. Nat Genet 2015; 47: 312–319.

    Article  CAS  Google Scholar 

  42. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 2013; 19: 619–625.

    Article  CAS  Google Scholar 

  43. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002; 295: 1726–1729.

    Article  CAS  Google Scholar 

  44. Yang K, Popova NV, Yang W, Lozonschi I, Tadesse S, Kent S et al. Interaction of Muc2 and Apc on Wnt signaling and in intestinal tumorigenesis: potential role of chronic inflammation. Cancer Res 2008; 68: 7313–7322.

    Article  CAS  Google Scholar 

  45. Denamur E, Chehab FF . Methylation status of CpG sites in the mouse and human CFTR promoters. DNA Cell Biol 1995; 14: 811–815.

    Article  CAS  Google Scholar 

  46. Son JW, Kim YJ, Cho HM, Lee SY, Lee SM, Kang JK et al. Promoter hypermethylation of the CFTR gene and clinical/pathological features associated with non-small cell lung cancer. Respirology 2011; 16: 1203–1209.

    Article  Google Scholar 

  47. Collawn JF, Fu L, Bartoszewski R, Matalon S . Rescuing ΔF508 CFTR with trimethylangelicin, a dual-acting corrector and potentiator. Am J Physiol Lung Cell Mol Physiol 2014; 307: L431–L434.

    Article  CAS  Google Scholar 

  48. Roth EK, Hirtz S, Duerr J, Wenning D, Eichler I, Seydewitz HH et al. The K+ channel opener 1-EBIO potentiates residual function of mutant CFTR in rectal biopsies from cystic fibrosis patients. PLoS One 2011; 6: e24445.

    Article  CAS  Google Scholar 

  49. Clarke LL, Gawenis LR, Franklin CL, Harline MC . Increased survival of CFTR knockout mice with an oral osmotic laxative. Lab Anim Sci 1996; 46: 612–618.

    CAS  PubMed  Google Scholar 

  50. Fijneman RJ, Anderson RA, Richards E, Liu J, Tijssen M, Meijer GA et al. Runx1 is a tumor suppressor gene in the mouse gastrointestinal tract. Cancer Sci 2012; 103: 593–599.

    Article  CAS  Google Scholar 

  51. Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 2003; 124: 762–777.

    Article  Google Scholar 

  52. IPA Ingenuity Systems. Available at http://www.ingenuity.com (Accessed 2 February 2013).

  53. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  54. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011; 141: 1762–1772.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from the National Cancer Institute (NCI) to RC and DL (NCI R01 CA134759-01A1); grant from the Mezin-Koats Colon Cancer Research fund to TS; grant from NCI to support the University of Minnesota Masonic Cancer Center (NCI P30-CA775598); grant from the Whiteside Institute for Clinical Research to RC and PS; grant from the University of Minnesota Foundation to RC, TS and DL; grant from Essentia Health Systems to RC; grant from the AICR (14–1164) to LV; grants from the Dutch Cancer Society (UVA2011–4969, UVA2014–7245) to LV; NWO gravitation grant to JL; grants from the National Cancer Institute to TS (NCI 5R00CA151672-04 and P30-CA77598). We also wish to thank Drs Mitchell Drumm and Craig Hodges of CWRU for providing the Cftr mutant mice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P M Scott, L Vermeulen or R T Cormier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Than, B., Linnekamp, J., Starr, T. et al. CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 35, 4191–4199 (2016). https://doi.org/10.1038/onc.2015.483

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.483

This article is cited by

Search

Quick links