Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency

Abstract

Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2- and γH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A ‘drug holiday’ where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G . The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008; 8: 11–23.

    Article  CAS  PubMed  Google Scholar 

  2. Hallberg B, Palmer RH . Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 2013; 13: 685–700.

    Article  CAS  PubMed  Google Scholar 

  3. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284.

    Article  CAS  PubMed  Google Scholar 

  4. Pulford K, Morris SW, Turturro F . Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 2004; 199: 330–358.

    Article  CAS  PubMed  Google Scholar 

  5. Bischof D, Pulford K, Mason DY, Morris SW . Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol 1997; 17: 2312–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mason DY, Pulford KA, Bischof D, Kuefer MU, Butler LH, Lamant L et al. Nucleolar localization of the nucleophosmin-anaplastic lymphoma kinase is not required for malignant transformation. CancerRes 1998; 58: 1057–1062.

    CAS  Google Scholar 

  7. Etchin J, Sanda T, Mansour MR, Kentsis A, Montero J, Le BT et al. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol 2013; 161: 117–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walker CJ, Oaks JJ, Santhanam R, Neviani P, Harb JG, Ferenchak G et al. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood 2013; 122: 3034–3044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vigneri P, Wang JY . Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 2001; 7: 228–234.

    Article  CAS  PubMed  Google Scholar 

  10. Mologni L . Inhibitors of the anaplastic lymphoma kinase. Expert Opin Invest Drugs 2012; 21: 985–994.

    Article  CAS  Google Scholar 

  11. Pall G . The next-generation ALK inhibitors. Curr Opin Oncol 2015; 27: 118–124.

    Article  CAS  PubMed  Google Scholar 

  12. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363: 1693–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 2014; 370: 1189–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mologni L . Expanding the portfolio of anti-ALK weapons. Transl Lung Cancer Res 2015; 4: 5–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 2014; 4: 662–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katayama R, Friboulet L, Koike S, Lockerman EL, Khan TM, Gainor JF et al. Two novel ALK mutations mediate acquired resistance to the next-generation alk inhibitor alectinib. Clin Cancer Res 2014; 20: 5686–5696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010; 363: 1734–1739.

    Article  CAS  PubMed  Google Scholar 

  18. Ignatius Ou SH, Azada M, Hsiang DJ, Herman JM, Kain TS, Siwak-Tapp C et al. Next-generation sequencing reveals a novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib. J Thorac Oncol 2014; 9: 549–553.

    Article  Google Scholar 

  19. Gambacorti Passerini C, Farina F, Stasia A, Redaelli S, Ceccon M, Mologni L et al. Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst 2014; 106: djt378.

    Article  PubMed  Google Scholar 

  20. Katayama R, Lovly CM, Shaw AT . Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res 2015; 21: 2227–2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 2012; 4: 120ra117.

    Article  Google Scholar 

  22. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 2012; 18: 1472–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Voena C, Chiarle R . The battle against ALK resistance: successes and setbacks. Expert Opin Invest Drugs 2012; 21: 1751–1754.

    Article  CAS  Google Scholar 

  24. Ceccon M, Mologni L, Bisson W, Scapozza L, Gambacorti-Passerini C . Crizotinib-resistant NPM-ALK mutants confer differential sensitivity to unrelated Alk inhibitors. Mol Cancer Res 2013; 11: 122–132.

    Article  CAS  PubMed  Google Scholar 

  25. Mologni L, Ceccon M, Pirola A, Chiriano G, Piazza R, Scapozza L et al. NPM/ALK mutants resistant to ASP3026 display variable sensitivity to alternative ALK inhibitors but succumb to the novel compound PF-06463922. Oncotarget 2015; 6: 5720–5734.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ceccon M, Mologni L, Giudici G, Piazza R, Pirola A, Fontana D et al. Treatment efficacy and resistance mechanisms using the second-generation ALK inhibitor AP26113 in human NPM-ALK-positive anaplastic large cell lymphoma. Mol Cancer Res 2015; 13: 775–783.

    Article  CAS  PubMed  Google Scholar 

  27. Zdzalik D, Dymek B, Grygielewicz P, Gunerka P, Bujak A, Lamparska-Przybysz M et al. Activating mutations in ALK kinase domain confer resistance to structurally unrelated ALK inhibitors in NPM-ALK-positive anaplastic large-cell lymphoma. J Cancer Res Clin Oncol 2014; 140: 589–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amin AD, Rajan SS, Liang WS, Pongtornpipat P, Groysman MJ, Tapia EO et al. Evidence suggesting that discontinuous dosing of ALK kinase inhibitors may prolong control of ALK+ tumors. Cancer Res 2015; 75: 2916–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  30. Tipping AJ, Mahon FX, Lagarde V, Goldman JM, Melo JV . Restoration of sensitivity to STI571 in STI571-resistant chronic myeloid leukemia cells. Blood 2001; 98: 3864–3867.

    Article  CAS  PubMed  Google Scholar 

  31. Desplat V, Belloc F, Lagarde V, Boyer C, Melo JV, Reiffers J et al. Overproduction of BCR-ABL induces apoptosis in imatinib mesylate-resistant cell lines. Cancer 2005; 103: 102–110.

    Article  CAS  PubMed  Google Scholar 

  32. Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 2013; 494: 251–255.

    Article  CAS  PubMed  Google Scholar 

  33. Suda K, Tomizawa K, Osada H, Maehara Y, Yatabe Y, Sekido Y et al. Conversion from the 'oncogene addiction' to 'drug addiction' by intensive inhibition of the EGFR and MET in lung cancer with activating EGFR mutation. Lung Cancer 2012; 76: 292–299.

    Article  PubMed  Google Scholar 

  34. Funakoshi Y, Mukohara T, Tomioka H, Ekyalongo RC, Kataoka Y, Inui Y et al. Excessive MET signaling causes acquired resistance and addiction to MET inhibitors in the MKN45 gastric cancer cell line. Invest New Drugs 2013; 31: 1158–1168.

    Article  CAS  PubMed  Google Scholar 

  35. Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 2005; 25: 8874–8886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    Article  CAS  PubMed  Google Scholar 

  37. Hills SA, Diffley JF . DNA replication and oncogene-induced replicative stress. Curr Biol 2014; 24: R435–R444.

    Article  CAS  PubMed  Google Scholar 

  38. Smith J, Tho LM, Xu N, Gillespie DA . The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 2010; 108: 73–112.

    Article  CAS  PubMed  Google Scholar 

  39. Kastan MB, Bartek J . Cell-cycle checkpoints and cancer. Nature 2004; 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  40. Medema RH, Macurek L . Checkpoint control and cancer. Oncogene 2012; 31: 2601–2613.

    Article  CAS  PubMed  Google Scholar 

  41. Wei F, Yan J, Tang D . Extracellular signal-regulated kinases modulate DNA damage response—a contributing factor to using MEK inhibitors in cancer therapy. Curr Med Chem 2011; 18: 5476–5482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piva R, Chiarle R, Manazza AD, Taulli R, Simmons W, Ambrogio C et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood 2006; 107: 689–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gambacorti-Passerini C, Messa C, Pogliani EM . Crizotinib in anaplastic large-cell lymphoma. N Engl J Med 2011; 364: 775–776.

    Article  PubMed  Google Scholar 

  44. Hapgood G, Savage KJ . The biology and management of systemic anaplastic large cell lymphoma. Blood 2015; 126: 17–25.

    Article  CAS  PubMed  Google Scholar 

  45. Rassidakis GZ, Thomaides A, Wang S, Jiang Y, Fourtouna A, Lai R et al. P53 gene mutations are uncommon but p53 is commonly expressed in anaplastic large-cell lymphoma. Leukemia 2005; 19: 1663–1669.

    Article  CAS  PubMed  Google Scholar 

  46. Cui YX, Kerby A, McDuff FK, Ye H, Turner SD . NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood 2009; 113: 5217–5227.

    Article  CAS  PubMed  Google Scholar 

  47. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  48. Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol 2015; 9: 601–616.

    Article  CAS  PubMed  Google Scholar 

  49. Dengler MA, Staiger AM, Gutekunst M, Hofmann U, Doszczak M, Scheurich P et al. Oncogenic stress induced by acute hyper-activation of Bcr-Abl leads to cell death upon induction of excessive aerobic glycolysis. PLoS One 2011; 6: e25139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 2014; 508: 118–122.

    Article  CAS  PubMed  Google Scholar 

  51. Koop A, Satzger I, Alter M, Kapp A, Hauschild A, Gutzmer R . Intermittent BRAF-inhibitor therapy is a feasible option: report of a patient with metastatic melanoma. Br J Dermatol 2014; 170: 220–222.

    Article  CAS  PubMed  Google Scholar 

  52. Das A, Wei G, Parikh K, Liu D . Selective inhibitors of nuclear export (SINE) in hematological malignancies. Exp Hematol Oncol 2015; 4: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Voena C, Conte C, Ambrogio C, Boeri Erba E, Boccalatte F, Mohammed S et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res 2007; 67: 4278–4286.

    Article  CAS  PubMed  Google Scholar 

  54. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H . Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  55. Martinengo C, Poggio T, Menotti M, Scalzo MS, Mastini C, Ambrogio C et al. ALK-dependent control of hypoxia-inducible factors mediates tumor growth and metastasis. Cancer Res 2014; 74: 6094–6106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Maria Stella Scalzo for technical support, Dr Emanuela Colombo for kindly providing MEFs that lack NPM1 (MEF NPM−/−p53−/−) and control fibroblasts (MEF p53−/−), Dr Guido Serini for the use of his confocal microscopy unit at the Candiolo Cancer Institute—IRCCS, Torino, Italy. We also thank Ariad Pharmaceutical, Pfizer, Astellas and Novartis that kindly provided all drugs used in this study. This work was supported by the Regione Lombardia (ID14546A) and Fondazione Berlucchi Onlus Grant 2014 (to CGP), and by grants FP7 ERC-2009-StG (Proposal No. 242965—‘Lunely’); Associazione Italiana per la Ricerca sul Cancro (AIRC) Grant IG-12023; Koch Institute/DFCC Bridge Project Fund; Ellison Foundation Boston; Worldwide Cancer Research Association (former AICR) grant 12-0216; the Grant for Oncology Innovation by Merck-Serono and R01 CA196703-01 (to RC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Gambacorti-Passerini or R Chiarle.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceccon, M., Merlo, M., Mologni, L. et al. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene 35, 3854–3865 (2016). https://doi.org/10.1038/onc.2015.456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.456

This article is cited by

Search

Quick links