Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ASXL2 promotes proliferation of breast cancer cells by linking ERα to histone methylation

Abstract

Estrogen receptor alpha (ERα) has a pivotal role in breast carcinogenesis by associating with various cellular factors. Selective expression of additional sex comb-like 2 (ASXL2) in ERα-positive breast cancer cells prompted us to investigate its role in chromatin modification required for ERα activation and breast carcinogenesis. Here, we observed that ASXL2 interacts with ligand E2-bound ERα and mediates ERα activation. Chromatin immunoprecipitation-sequencing analysis supports a positive role of ASXL2 at ERα target gene promoters. ASXL2 forms a complex with histone methylation modifiers including LSD1, UTX and MLL2, which all are recruited to the E2-responsive genes via ASXL2 and regulate methylations at histone H3 lysine 4, 9 and 27. The preferential binding of the PHD finger of ASXL2 to the dimethylated H3 lysine 4 may account for its requirement for ERα activation. On ASXL2 depletion, the proliferative potential of MCF7 cells and tumor size of xenograft mice decreased. Together with our finding on the higher ASXL2 expression in ERα-positive patients, we propose that ASXL2 could be a novel prognostic marker in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G et al. Mechanisms of estrogen action. Physiol Rev 2001; 81: 1535–1565.

    Article  CAS  Google Scholar 

  2. Matthews J, Gustafsson JA . Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 2003; 3: 281–292.

    Article  CAS  Google Scholar 

  3. Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003; 115: 751–763.

    Article  CAS  Google Scholar 

  4. Yager JD, Davidson NE . Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354: 270–282.

    Article  CAS  Google Scholar 

  5. Dalvai M, Bystricky K . The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 19–33.

    Article  Google Scholar 

  6. Gage M, Wattendorf D, Henry LR . Translational advances regarding hereditary breast cancer syndromes. J Surg Oncol 2012; 105: 444–451.

    Article  CAS  Google Scholar 

  7. Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S . Epigenetics in breast cancer: what's new? Breast Cancer Res 2011; 13: 225.

    Article  CAS  Google Scholar 

  8. Connolly R, Stearns V . Epigenetics as a therapeutic target in breast cancer. J Mammary Gland Biol 2012; 17: 191–204.

    Article  Google Scholar 

  9. Hervouet E, Cartron PF, Jouvenot M, Delage-Mourroux R . Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics 2013; 8: 237–245.

    Article  CAS  Google Scholar 

  10. Moggs JG, Orphanides G . Estrogen receptors: orchestrators of pleiotropic cellular responses. EMBO Rep 2001; 2: 775–781.

    Article  CAS  Google Scholar 

  11. Stratmann A, Haendler B . Histone demethylation and steroid receptor function in cancer. Mol Cell Endocrinol 2012; 348: 12–20.

    Article  Google Scholar 

  12. Al-Dhaheri M, Wu JC, Skliris GP, Li J, Higashimato K, Wang YD et al. CARM1 is an important determinant of ER alpha-dependent breast cancer cell differentiation and proliferation in breast cancer cells. Cancer Res 2011; 71: 2118–2128.

    Article  CAS  Google Scholar 

  13. Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 2007; 128: 505–518.

    Article  CAS  Google Scholar 

  14. Kawazu M, Saso K, Tong KI, McQuire T, Goto K, Son DO et al. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS One 2011; 6: e17830.

    Article  CAS  Google Scholar 

  15. Kim H, Heo K, Kim JH, Kim K, Choi J, An WJ . Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription. J Biol Chem 2009; 284: 19867–19877.

    Article  CAS  Google Scholar 

  16. Cho YS, Kim EJ, Park UH, Sin HS, Um SJ . Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem 2006; 281: 17588–17598.

    Article  CAS  Google Scholar 

  17. Park UH, Yoon SK, Park T, Kim EJ, Um SJ . Additional sex comb-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor gamma. J Biol Chem 2011; 286: 1354–1363.

    Article  CAS  Google Scholar 

  18. Katoh M . Functional and cancer genomics of ASXL family members. Br J Cancer 2013; 109: 299–306.

    Article  CAS  Google Scholar 

  19. Lai HL, Grachoff M, McGinley AL, Khan FF, Warren CM, Chowdhury SAK et al. Maintenance of adult cardiac function requires the chromatin factor Asxl2. J Mol Cell Cardiol 2012; 53: 734–741.

    Article  CAS  Google Scholar 

  20. Farber CR, Bennett BJ, Orozco L, Zou W, Lira A, Kostem E et al. Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 2011; 7: e1002038.

    Article  CAS  Google Scholar 

  21. Lai HL, Wang QT . Additional sex combs-like 2 is required for polycomb repressive complex 2 binding at select targets. PLoS One 2013; 8: e73983.

    Article  CAS  Google Scholar 

  22. Kong SL, Li G, Loh SL, Sung WK, Liu ET . Cellular reprogramming by the conjoint action of ERalpha, FOXA1, and GATA3 to a ligand-inducible growth state. Mol Syst Biol 2011; 7: 526.

    Article  Google Scholar 

  23. Joseph R, Orlov YL, Huss M, Sun W, Kong SL, Ukil L et al. Integrative model of genomic factors for determining binding site selection by estrogen receptor-alpha. Mol Syst Biol 2010; 6: 456.

    Article  Google Scholar 

  24. Kleer CG, Cao Q, Varambally S, Shen RL, Ota L, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  Google Scholar 

  25. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437: 436–439.

    Article  CAS  Google Scholar 

  26. Swigut T, Wysocka J . H3K27 demethylases, at long last. Cell 2007; 131: 29–32.

    Article  CAS  Google Scholar 

  27. Aravind L, Iyer LM . The HARE-HTH and associated domains Novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 2012; 11: 119–131.

    Article  CAS  Google Scholar 

  28. Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 2003; 114: 99–111.

    Article  CAS  Google Scholar 

  29. Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 2006; 442: 96–99.

    Article  CAS  Google Scholar 

  30. Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X . Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 2010; 17: 38–43.

    Article  CAS  Google Scholar 

  31. Arteaga MF, Mikesch JH, Qiu J, Christensen J, Helin K, Kogan SC et al. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. Cancer Cell 2013; 23: 376–389.

    Article  CAS  Google Scholar 

  32. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006; 98: 262–272.

    Article  CAS  Google Scholar 

  33. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 2006; 66: 10292–10301.

    Article  CAS  Google Scholar 

  34. Gozgit JM, Pentecost BT, Marconi SA, Ricketts-Loriaux RSJ, Otis CN, Arcaro KF . PLD1 is overexpressed in an ER-negative MCF-7 cell line variant and a subset of phospho-Akt-negative breast carcinomas. Br J Cancer 2007; 97: 809–817.

    Article  CAS  Google Scholar 

  35. Smid M, Wang YX, Zhang Y, Sieuwerts AM, Yu J, Klijn JGM et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res 2008; 68: 3108–3114.

    Article  CAS  Google Scholar 

  36. Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 2007; 7: 55.

    Article  Google Scholar 

  37. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941–953.

    Article  CAS  Google Scholar 

  38. Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y . Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005; 19: 857–864.

    Article  CAS  Google Scholar 

  39. Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 2007; 9: 347–353.

    Article  CAS  Google Scholar 

  40. Akhavantabasi S, Akman HB, Sapmaz A, Keller J, Petty EM, Erson AE . USP32 is an active, membrane-bound ubiquitin protease overexpressed in breast cancers. Mamm Genome 2010; 21: 388–397.

    Article  CAS  Google Scholar 

  41. Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A . Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chromosomes Cancer 2006; 45: 411–419.

    Article  CAS  Google Scholar 

  42. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997; 277: 965–968.

    Article  CAS  Google Scholar 

  43. List HJ, Lauritsen KJ, Reiter R, Powers C, Wellstein A, Riegel AT . Ribozyme targeting demonstrates that the nuclear receptor coactivator AIB1 is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells. J Biol Chem 2001; 276: 23763–23768.

    Article  CAS  Google Scholar 

  44. Shi L, Sun LY, Li Q, Liang J, Yu WH, Yi X et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc Natl Acad Sci USA 2011; 108: 7541–7546.

    Article  CAS  Google Scholar 

  45. Cortez V, Mann M, Tekmal S, Suzuki T, Miyata N, Rodriguez-Aguayo C et al. Targeting the PELP1-KDM1 axis as a potential therapeutic strategy for breast cancer. Breast Cancer Res 2012; 14: R108.

    Article  CAS  Google Scholar 

  46. Shen Y, Guo X, Wang Y, Qiu W, Chang Y, Zhang A et al. Expression and significance of histone H3K27 demethylases in renal cell carcinoma. BMC Cancer 2012; 12: 470.

    Article  CAS  Google Scholar 

  47. Serce N, Gnatzy A, Steiner S, Lorenzen H, Kirfel J, Buettner R . Elevated expression of LSD1 (Lysine-specific demethylase 1) during tumour progression from pre-invasive to invasive ductal carcinoma of the breast. BMC Clin Pathol 2012; 12: 13.

    Article  Google Scholar 

  48. Pollock JA, Larrea MD, Jasper JS, McDonnell DP, McCafferty DG . Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERalpha-dependent and -independent manners. ACS Chem Biol 2012; 7: 1221–1231.

    Article  CAS  Google Scholar 

  49. Glinsky GV, Higashiyama T, Glinskii AB . Classification of human breast cancer using gene expression profiling as a component of the survival predictor algorithm. Clin Cancer Res 2004; 10: 2272–2283.

    Article  CAS  Google Scholar 

  50. Milne TA, Hughes CM, Lloyd R, Yang ZH, Rozenblatt-Rosen O, Dou YL et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 2005; 102: 749–754.

    Article  CAS  Google Scholar 

  51. Langmead B, Trapnell C, Pop M, Salzberg SL . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.

    Article  Google Scholar 

  52. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant of the National R&D program for Cancer Control (1120210), a grant from the Korea Food Research Institute, and a grant of the Basic Science Research Program through NRF grant (2014R1A2A1A11052685), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-J Um.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, UH., Kang, MR., Kim, EJ. et al. ASXL2 promotes proliferation of breast cancer cells by linking ERα to histone methylation. Oncogene 35, 3742–3752 (2016). https://doi.org/10.1038/onc.2015.443

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.443

This article is cited by

Search

Quick links