Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines

Abstract

Ras GTPases are activated by RasGEFs and inactivated by RasGAPs, which stimulate the hydrolysis of RasGTP to inactive RasGDP. GTPase-impairing somatic mutations in RAS genes, such as KRASG12D, are among the most common oncogenic events in metastatic cancer. A different type of cancer Ras signal, driven by overexpression of the RasGEF RasGRP1 (Ras guanine nucleotide-releasing protein 1), was recently implicated in pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and murine models, in which RasGRP1 T-ALLs expand in response to treatment with interleukins (ILs) 2, 7 and 9. Here, we demonstrate that IL-2/7/9 stimulation activates Erk and Akt pathways downstream of Ras in RasGRP1 T-ALL but not in normal thymocytes. In normal lymphocytes, RasGRP1 is recruited to the membrane by diacylglycerol (DAG) in a phospholipase C-γ (PLCγ)-dependent manner. Surprisingly, we find that leukemic RasGRP1-triggered Ras-Akt signals do not depend on acute activation of PLCγ to generate DAG but rely on baseline DAG levels instead. In agreement, using three distinct assays that measure different aspects of the RasGTP/GDP cycle, we established that overexpression of RasGRP1 in T-ALLs results in a constitutively high GTP-loading rate of Ras, which is constantly counterbalanced by hydrolysis of RasGTP. KRASG12D T-ALLs do not show constitutive GTP loading of Ras. Thus, we reveal an entirely novel type of leukemogenic Ras signals that is based on a RasGRP1-driven increased in flux through the RasGTP/GDP cycle, which is mechanistically very different from KRASG12D signals. Our studies highlight the dynamic balance between RasGEF and RasGAP in these T-ALLs and put forth a new model in which IL-2/7/9 decrease RasGAP activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  Google Scholar 

  2. Barata J, Keenan T, Silva A, Nadler L, Boussiotis V, Cardoso A . Common gamma chain-signaling cytokines promote proliferation of T-cell acute lymphoblastic leukemia. Haematologica 2004; 89: 1459–1467.

    CAS  PubMed  Google Scholar 

  3. Silva A, Laranjeira ABA, Martins LR, Cardoso BA, Demengeot J, Yunes JA et al. IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res 2011; 71: 4780–4789.

    Article  CAS  Google Scholar 

  4. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43: 932–939.

    Article  CAS  Google Scholar 

  5. Hartzell C, Ksionda O, Lemmens E, Coakley K, Yang M, Dail M et al. Dysregulated RasGRP1 responds to cytokine receptor input in T cell leukemogenesis. Sci Signal 2013; 6: ra21.

    Article  Google Scholar 

  6. Ksionda O, Limnander A, Roose JP . RasGRP Ras guanine nucleotide exchange factors in cancer. Front Biol (Beijing) 2013; 8: 508–532.

    Article  CAS  Google Scholar 

  7. Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000; 1: 317–321.

    Article  CAS  Google Scholar 

  8. Kim R, Trubetskoy A, Suzuki T, Jenkins NA, Copeland NG, Lenz J . Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J Virol 2003; 77: 2056–2062.

    Article  CAS  Google Scholar 

  9. Klinger MB, Guilbault B, Goulding RE, Kay RJ . Deregulated expression of RasGRP1 initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene 2004; 24: 2695–2704.

    Article  Google Scholar 

  10. Oki T, Kitaura J, Watanabe-Okochi N, Nishimura K, Maehara A, Uchida T et al. Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis. Leukemia 2011; 26: 1038–1045.

    Article  Google Scholar 

  11. Feske S, Skolnik EY, Prakriya M . Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 2012; 12: 532–547.

    Article  CAS  Google Scholar 

  12. Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y et al. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. Elife 2013; 2: e00813.

    Article  Google Scholar 

  13. Mitin N, Rossman KL, Der CJ . Signaling interplay in Ras superfamily function. Curr Biol 2005; 15: R563–R574.

    Article  CAS  Google Scholar 

  14. Daley SR, Coakley KM, Hu DY, Randall KL, Jenne CN, Limnander A et al. Rasgrp1 mutation increases naive T-cell CD44 expression and drives mTOR-dependent accumulation of Helios(+) T cells and autoantibodies. Elife 2013; 2: e01020.

    Article  Google Scholar 

  15. Jiang Y, Sakane F, Kanoh H, Walsh JP . Selectivity of the diacylglycerol kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2, 3-dihydro-2-thioxo-4(1Hquinazolinone (R59949) among diacylglycerol kinase subtypes. Biochem Pharmacol 2000; 59: 763–772.

    Article  CAS  Google Scholar 

  16. Rubio I, Grund S, Song SP, Biskup C, Bandemer S, Fricke M et al. TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras. J Immunol 2010; 185: 3536–3543.

    Article  CAS  Google Scholar 

  17. Roose J, Mollenauer M, Gupta V, Stone J, Weiss A . A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol 2005; 25: 4426–4441.

    Article  CAS  Google Scholar 

  18. King PD, Lubeck BA, Lapinski PE . Nonredundant functions for Ras GTPase-activating proteins in tissue homeostasis. Sci Signal 2013; 6: re1.

    Article  Google Scholar 

  19. de Vries-Smits AM, van der V, Downward J, Bos JL . Measurements of GTP/GDP exchange in permeabilized fibroblasts. Methods Enzymol 1995; 255: 156–161.

    Article  CAS  Google Scholar 

  20. Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC . RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 1998; 280: 1082–1086.

    Article  CAS  Google Scholar 

  21. Rubio I, Rennert K, Wittig U, Beer K, Durst M, Stang SL et al. Ras activation in response to phorbol ester proceeds independently of the EGFR via an unconventional nucleotide-exchange factor system in COS-7 cells. Biochem J 2006; 398: 243–256.

    Article  CAS  Google Scholar 

  22. Downward J, Graves JD, Warne PH, Rayter S, Cantrell DA . Stimulation of p21ras upon T-cell activation. Nature 1990; 346: 719–723.

    Article  CAS  Google Scholar 

  23. Rubio I, Wetzker R . A permissive function of phosphoinositide 3-kinase in Ras activation mediated by inhibition of GTPase-activating proteins. Curr Biol 2000; 10: 1225–1228.

    Article  CAS  Google Scholar 

  24. Hennig A, Markwart R, Esparza-Franco MA, Ladds G, Ignacio R . Ras activation revisited: role of GEF and GAPs systems. Biol Chem 2015; 396: 831–848.

    Article  CAS  Google Scholar 

  25. Gorentla BK, Wan CK, Zhong XP . Negative regulation of mTOR activation by diacylglycerol kinases. Blood 2011; 117: 4022–4031.

    Article  CAS  Google Scholar 

  26. Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA, Boussiotis VA . Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 2004; 200: 659–669.

    Article  CAS  Google Scholar 

  27. Laplante M, Sabatini DM . Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013; 126: 1713–1719.

    Article  CAS  Google Scholar 

  28. Cichowski K . Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev 2003; 17: 449–454.

    Article  CAS  Google Scholar 

  29. Lapinski PE, Qiao Y, Chang C-H, King PD . A role for p120 RasGAP in thymocyte positive selection and survival of naive T cells. J Immunol (Baltimore, MD: 1950) 2011; 187: 151–163.

    Article  CAS  Google Scholar 

  30. Oliver JA, Lapinski PE, Lubeck BA, Turner JS, Parada LF, Zhu Y et al. The Ras GTPase-activating protein neurofibromin 1 promotes the positive selection of thymocytes. Mol Immunol 2013; 55: 292–302.

    Article  CAS  Google Scholar 

  31. Lubeck BA, Lapinski PE, Oliver JA, Ksionda O, Parada LF, Zhu Y et al. Cutting edge: codeletion of the Ras GTPase-activating proteins (RasGAPs) neurofibromin 1 and p120 RasGAP in T cells results in the development of T Cell acute lymphoblastic leukemia. J Immunol 2015; 195: 31–35.

    Article  CAS  Google Scholar 

  32. Balgobind BV, Van Vlierberghe P, van den Ouweland AMW, Beverloo HB, Terlouw-Kromosoeto JNR, van Wering ER et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 2008; 111: 4322–4328.

    Article  CAS  Google Scholar 

  33. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  Google Scholar 

  34. Neumann M, Heesch S, Schlee C, Schwartz S, Gokbuget N, Hoelzer D et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood 2013; 121: 4749–4752.

    Article  CAS  Google Scholar 

  35. Stites EC, Trampont PC, Haney LB, Walk SF, Ravichandran KS . Cooperation between noncanonical Ras network mutations. Cell Rep 2015; 10: 307–316.

    Article  CAS  Google Scholar 

  36. Rubio I, Rennert K, Wittig U, Wetzker R . Ras activation in response to lysophosphatidic acid requires a permissive input from the epidermal growth factor receptor. Biochem J 2003; 376: 571–576.

    Article  CAS  Google Scholar 

  37. Downward J . Role of receptor tyrosine kinases in G-protein-coupled receptor regulation of Ras: transactivation or parallel pathways? Biochem J 2003; 376: e9–e10.

    Article  CAS  Google Scholar 

  38. Krutzik PO, Nolan GP . Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 2006; 3: 361–368.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Roose lab members for helpful comments and Anna Hupalowska for the graphics in Figure 4. Our research was supported by an NIH-NCI Physical Science Oncology Center Grant U54CA143874, an NIH-NIAID Grant (P01 Program Project—AI091580), a Gabrielle’s Angel Foundation Grant and NIH-NCI Grant (R01—CA187318) (all to JPR), as well as by an NIH T32 training grant (5T32CA128583-05) and the KWF (Dutch Cancer Society) (MT and JB). This work was also supported by grants from the NCI to the Children’s Oncology Group including U10 CA98543 and CA180886 (COG Chair's Grant), U10 CA98413 and CA180899 (COG Statistical Center) and U24 CA114766 (COG Specimen Banking).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O Ksionda or J P Roose.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksionda, O., Melton, A., Bache, J. et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene 35, 3658–3668 (2016). https://doi.org/10.1038/onc.2015.431

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.431

This article is cited by

Search

Quick links