Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters

Subjects

Abstract

Deregulation of the MYC oncogene produces Myc protein that regulates multiple aspects of cancer cell metabolism, contributing to the acquisition of building blocks essential for cancer cell growth and proliferation. Therefore, disabling Myc function represents an attractive therapeutic option for cancer treatment. However, pharmacological strategies capable of directly targeting Myc remain elusive. Here, we identified that 3-bromopyruvate (3-BrPA), a drug candidate that primarily inhibits glycolysis, preferentially induced massive cell death in human cancer cells overexpressing the MYC oncogene, in vitro and in vivo, without appreciable effects on those exhibiting low MYC levels. Importantly, pharmacological inhibition of glutamine metabolism synergistically potentiated the synthetic lethal targeting of MYC by 3-BrPA due in part to the metabolic disturbance caused by this combination. Mechanistically, we identified that the proton-coupled monocarboxylate transporter 1 (MCT1) and MCT2, which enable efficient 3-BrPA uptake by cancer cells, were selectively activated by Myc. Two regulatory mechanisms were involved: first, Myc directly activated MCT1 and MCT2 transcription by binding to specific recognition sites of both genes; second, Myc transcriptionally repressed miR29a and miR29c, resulting in enhanced expression of their target protein MCT1. Of note, expressions of MCT1 and MCT2 were each significantly elevated in MYCN-amplified neuroblastomas and C-MYC-overexpressing lymphomas than in tumors without MYC overexpression, correlating with poor prognosis and unfavorable patient survival. These results identify a novel mechanism by which Myc sensitizes cells to metabolic inhibitors and validate 3-BrPA as potential Myc-selective cancer therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB . Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 2008; 18: 54–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Green DR, Galluzzi L, Kroemer G . Metabolic control of cell death. Science 2014; 345: 1250256.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wellen KE, Thompson CB . A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol 2012; 13: 270–276.

    Article  CAS  PubMed  Google Scholar 

  5. Hensley CT, Wasti AT, DeBerardinis RJ . Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123: 3678–3684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warburg O, Wind F, Negelein E . The metabolism of tumors in the body. J Gen Physiol 1927; 8: 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dang CV . MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 2013; 1: 1–15.

    Google Scholar 

  8. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adhikary S, Eilers M . Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005; 6: 635–645.

    Article  CAS  PubMed  Google Scholar 

  10. Halestrap AP, Wilson MC . The monocarboxylate transporter family-role and regulation. IUBMB Life 2012; 64: 109–119.

    Article  CAS  PubMed  Google Scholar 

  11. Halestrap AP . The SLC16 gene family-structure, role and regulation in health and disease. Mol Aspects Med 2013; 34: 337–349.

    Article  CAS  PubMed  Google Scholar 

  12. Garcia CK, Brown MS, Pathak RK, Goldstein JL . cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem 1995; 270: 1843–1849.

    Article  CAS  PubMed  Google Scholar 

  13. Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci USA 2011; 108: 16663–16668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ko YH, Pedersen PL, Geschwind JF . Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 2001; 173: 83–91.

    Article  CAS  PubMed  Google Scholar 

  15. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782–18787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y . Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007; 178: 93–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 2012; 22: 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ren P, Yue M, Xiao D, Xiu R, Gan L, Liu H et al. ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation. J Pathol 2015; 235: 90–100.

    Article  CAS  PubMed  Google Scholar 

  20. Qing G, Skuli N, Mayes PA, Pawel B, Martinez D, Maris JM et al. Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. Cancer Res 2010; 70: 10351–10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halestrap AP, Meredith D . The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 2004; 447: 619–628.

    Article  CAS  PubMed  Google Scholar 

  22. Thangaraju M, Karunakaran SK, Itagaki S, Gopal E, Elangovan S, Prasad PD et al. Transport by SLC5A8 with subsequent inhibition of histone deacetylase 1 (HDAC1) and HDAC3 underlies the antitumor activity of 3-bromopyruvate. Cancer 2009; 115: 4655–4666.

    Article  CAS  PubMed  Google Scholar 

  23. Queiros O, Preto A, Pacheco A, Pinheiro C, Azevedo-Silva J, Moreira R et al. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J Bioenerg Biomembr 2012; 44: 141–153.

    Article  CAS  PubMed  Google Scholar 

  24. Cardaci S, Rizza S, Filomeni G, Bernardini R, Bertocchi F, Mattei M et al. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1. Cancer Res 2012; 72: 4526–4536.

    Article  CAS  PubMed  Google Scholar 

  25. Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW et al. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet 2013; 45: 104–108.

    Article  CAS  PubMed  Google Scholar 

  26. Cardaci S, Desideri E, Ciriolo MR . Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug. J Bioenerg Biomembr 2012; 44: 17–29.

    Article  CAS  PubMed  Google Scholar 

  27. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R et al. Coordinated silencing of MYC-mediated miR29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell 2012; 22: 506–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geschwind JF, Georgiades CS, Ko YH, Pedersen PL . Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther 2004; 4: 449–457.

    Article  CAS  PubMed  Google Scholar 

  30. Maher JC, Krishan A, Lampidis T . Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic condition. Cancer Chemother Pharmacol 2004; 53: 116–122.

    Article  CAS  PubMed  Google Scholar 

  31. Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF et al. 2-Deoxy-D-glucose increases the efficacy of Adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 2004; 64: 31–34.

    Article  CAS  PubMed  Google Scholar 

  32. Pelicano H, Martin DS, Xu RF, Huang P . Glycolysis inhibition for anticancer treatment. Oncogene 2006; 25: 4633–4646.

    Article  CAS  PubMed  Google Scholar 

  33. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 2005; 65: 613–621.

    CAS  PubMed  Google Scholar 

  34. Ota S, Geschwind JF, Buijs M, Wijlemans JW, Kwak BK, Ganapathy-Kanniappan S . Ultrasound-guided direct delivery of 3-bromopyruvate blocks tumor progression in an orthotopic mouse model of human pancreatic cancer. Target Oncol 2013; 8: 145–151.

    Article  PubMed  Google Scholar 

  35. Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL . A translational study "case report" on the small molecule "energy blocker" 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr 2012; 44: 163–170.

    Article  CAS  PubMed  Google Scholar 

  36. Chapiro J, Sur S, Savic LJ, Ganapathy-Kanniappan S, Reyes J, Duran R et al. Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer. Clin Cancer Res 2014; 20: 6406–6417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ullah MS, Davies AJ, Halestrap AP . The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 2006; 281: 9030–9037.

    Article  CAS  PubMed  Google Scholar 

  38. Boidot R, Végran F, Meulle A, Le Breton A, Dessy C, Sonveaux P et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 2012; 72: 939–948.

    Article  CAS  PubMed  Google Scholar 

  39. Doherty JR, Yang C, Scott KE, Cameron MD, Fallahi M, Li W et al. Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res 2014; 74: 908–920.

    Article  CAS  PubMed  Google Scholar 

  40. Li B, Simon MC . Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res 2013; 19: 5835–5841.

    Article  CAS  PubMed  Google Scholar 

  41. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107: 2037–2042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nilsson LM, Forshell TZ, Rimpi S, Kreutzer C, Pretsch W, Bornkamm GW et al. Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis. PLoS Genet 2012; 8: 1–11.

    Article  Google Scholar 

  43. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010; 18: 207–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest 2015; 125: 2293–2306.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov 2013; 3: 308–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 2014; 511: 616–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014; 159: 1126–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goga A, Yang D, Tward AD, Morgan DO, Bishop JM . Inhibition of CDK1 as a potential therapy for tumors over-expressing. MYC. Nat Med 2007; 13: 820–827.

    Article  CAS  PubMed  Google Scholar 

  51. Yang D, Liu H, Goga A, Kim S, Yuneva M, Bishop JM . Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci USA 2010; 107: 13836–13841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montaña MF et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 2011; 18: 1331–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tennant DA, Durán RV, Gottlieb E . Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 2010; 10: 267–277.

    Article  CAS  PubMed  Google Scholar 

  54. Cairns RA, Harris IS, Mak TW . Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.

    Article  CAS  PubMed  Google Scholar 

  55. Vander Heiden MG . Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 2009; 23: 1895–18909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of Qing and Liu laboratories for helpful suggestions. This study was supported by the National Natural Science Foundation of China (Grants 81171928 and 81372205 to GQ, 81272491 to GH and 81200381 to HL) and Huazhong University of Science and Technology (Grant 2014ZHYX002 to GQ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Hu or G Qing.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Xiu, R., Ren, P. et al. Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters. Oncogene 35, 3037–3048 (2016). https://doi.org/10.1038/onc.2015.360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.360

This article is cited by

Search

Quick links