Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NFATc2 is an intrinsic regulator of melanoma dedifferentiation

A Correction to this article was published on 28 January 2019

Abstract

Melanoma dedifferentiation, characterized by the loss of MITF and MITF regulated genes and by upregulation of stemness markers as CD271, is implicated in resistance to chemotherapy, target therapy and immunotherapy. The identification of intrinsic mechanisms fostering melanoma dedifferentiation may provide actionable therapeutic targets to improve current treatments. Here, we identify NFATc2 transcription factor as an intrinsic regulator of human melanoma dedifferentiation. In panels of melanoma cell lines, NFATc2 expression correlated inversely with MITF at both mRNA and protein levels. NFATc2+/Hi melanoma cell lines were CD271+ and deficient for expression of melanocyte differentiation antigens (MDAs) MART-1, gp100, tyrosinase and of GPNMB, PGC1-α and Rab27a, all regulated by MITF. Targeting of NFATc2 by small interfering RNA, short hairpin RNA and by an NFATc2 inhibitor upregulated MITF, MDAs, GPNMB, PGC-1α, tyrosinase activity and pigmentation and suppressed CD271. Mechanistically, we found that NFATc2 controls melanoma dedifferentiation by inducing expression in neoplastic cells of membrane-bound tumor necrosis factor-α (mTNF-α) and that melanoma-expressed TNF-α regulates a c-myc-Brn2 axis. Specifically, NFATc2, mTNF-α and expression of TNF receptors were significantly correlated in panels of cell lines. NFATc2 silencing suppressed TNF-α expression, and neutralization of melanoma-expressed TNF-α promoted melanoma differentiation. Moreover, silencing of NFATc2 and TNF-α neutralization downmodulated c-myc and POU3F2/Brn2. Brn2 was strongly expressed in NFATc2+/Hi MITFLo cell lines and its silencing upregulated MITF. Targeting of c-myc, by silencing or by a c-myc inhibitor, suppressed Brn2 and upregulated MITF and MART-1 in melanoma cells. The relevance of NFATc2-dependent melanoma dedifferentiation for immune escape was shown by cytolytic T-cell assays. NFATc2Hi MITFLo MDALo HLA-A2.1+ melanoma cells were poorly recognized by MDA-specific and HLA-A2-restricted CTL lines, but NFATc2 targeting significantly increased CTL-mediated tumor recognition. Taken together, these results suggest that the expression of NFATc2 promotes melanoma dedifferentiation and immune escape.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kemper K, de Goeje PL, Peeper DS, van Amerongen R . Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res 2014; 74: 5937–5941.

    CAS  PubMed  Google Scholar 

  2. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 2012; 490: 412–416.

    CAS  PubMed  Google Scholar 

  3. Ravindran Menon DS, Das S, Krepler C, Vultur A, Rinner B, Schauer S et al. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 2014; 34: 4448–4459.

    PubMed  PubMed Central  Google Scholar 

  4. Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013; 24: 466–480.

    CAS  PubMed  Google Scholar 

  5. Cheli Y, Bonnazi VF, Jacquel A, Allegra M, De Donatis GM, Bahadoran et al. CD271 is an imperfect marker for melanoma initiating cells. Oncotarget 2014; 5: 5272–5283.

    PubMed  PubMed Central  Google Scholar 

  6. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A et al. A melanoma cell state distinction influences sensitivity to MAPK inhibitors. Cancer Discov 2014; 4: 816–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Müller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun 2014; 5: 5712.

    PubMed  PubMed Central  Google Scholar 

  8. Furuta J, Inozume T, Harada K, Shimada S . CD271 on melanoma cell is an IFN-gamma-inducible immunosuppressive factor that mediates downregulation of melanoma antigens. J Invest Dermatol 2014; 134: 1369–1377.

    CAS  PubMed  Google Scholar 

  9. Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA et al. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene 2012; 31: 4898–4911.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Denecker G, Vandamme N, Akay O, Koludrovic D, Taminau J, Lemeire K et al. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ 2014; 21: 1250–1261.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartman ML, Czyz M . MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2015; 72: 1249–1260.

    CAS  PubMed  Google Scholar 

  12. Cheli Y, Ohanna M, Ballotti R, Bertolotto C . Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 2010; 23: 27–40.

    CAS  PubMed  Google Scholar 

  13. Hoek KS, Eichhoff OM, Schlegel NC, Döbbeling U, Kobert N, Schaerer L et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 2008; 68: 650–656.

    CAS  PubMed  Google Scholar 

  14. Medyouf H, Ghysdael J . The calcineurin/NFAT signaling pathway: a novel therapeutic target in leukemia and solid tumors. Cell Cycle 2008; 7: 297–303.

    CAS  PubMed  Google Scholar 

  15. Mancini M, Toker A . NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 2009; 9: 810–820.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Perotti V, Baldassari P, Bersani I, Molla A, Vegetti C, Tassi E et al. NFATc2 is a potential therapeutic target in human melanoma. J Invest Dermatol 2012; 132: 2652–2660.

    CAS  PubMed  Google Scholar 

  17. Flockhart RJ, Armstrong JL, Reynolds NJ, Lovat PE . NFAT signalling is a novel target of oncogenic BRAF in metastatic melanoma. Br J Cancer 2009; 101: 1448–1455.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 2010; 466: 133–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Caballero FJ, Navarrete CM, Hess S, Fiebich BL, Appendino G, Macho A et al. The acetaminophen-derived bioactive N-acylphenolamine AM404 inhibits NFAT by targeting nuclear regulatory events. Biochem Pharmacol 2007; 73: 1013–1023.

    CAS  PubMed  Google Scholar 

  20. Kaminuma O, Kitamura F, Kitamura N, Hiroi T, Miyoshi H, Miyawaki A et al. Differential contribution of NFATc2 and NFATc1 to TNF-alpha gene expression in T cells. J Immunol 2008; 180: 319–326.

    CAS  PubMed  Google Scholar 

  21. Mognol GP, de Araujo-Souza PS, Robbs BK, Teixeira LK, Viola JP . Transcriptional regulation of the c-Myc promoter by NFAT1 involves negative and positive NFAT-responsive elements. Cell Cycle 2012; 11: 1014–1028.

    CAS  PubMed  Google Scholar 

  22. Singh G, Singh SK, Konig A, Reutlinger K, Nye MD, Adhikary T et al. Sequential activation of NFAT and c-Myc transcription factors mediates the TGF-beta switch from a suppressor to a promoter of cancer cell proliferation. J Biol Chem 2010; 285: 27241–27250.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ninomiya-Tsuji J, Torti FM, Ringold GM . Tumor necrosis factor-induced c-myc expression in the absence of mitogenesis is associated with inhibition of adipocyte differentiation. Proc Natl Acad Sci USA 1993; 90: 9611–9615.

    CAS  PubMed  Google Scholar 

  24. Takada Y, Ichikawa H, Pataer A, Swisher S, Aggarwal BB . Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation. Oncogene 2007; 26: 1201–1212.

    CAS  PubMed  Google Scholar 

  25. Goodall J, Carreira S, Denat L, Kobi D, Davidson I, Nuciforo P et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res 2008; 68: 7788–7794.

    CAS  PubMed  Google Scholar 

  26. Mortarini R, Piris A, Maurichi A, Molla A, Bersani I, Bono A et al. Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res 2003; 63: 2535–2545.

    CAS  PubMed  Google Scholar 

  27. Romero P, Cerottini JC, Speiser DE . The human T cell response to melanoma antigens. Adv Immunol 2006; 92: 187–224.

    CAS  PubMed  Google Scholar 

  28. Verfaillie A, Imrichova H, Atak ZK, Dewaele M, Rambow F, Hulselmans G et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun 2015; 6: 6683.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mammucari C, Tommasi di Vignano A, Sharov AA, Neilson J, Havrda MC, Roop DR et al. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev Cell 2005; 8: 665–676.

    CAS  PubMed  Google Scholar 

  30. Santini MP, Talora C, Seki T, Bolgan L, Dotto GP . Cross talk among calcineurin, Sp1/Sp3, and NFAT in control of p21(WAF1/CIP1) expression in keratinocyte differentiation. Proc Natl Acad Sci USA 2001; 98: 9575–9580.

    CAS  PubMed  Google Scholar 

  31. Zhou Y, Wang Q, Weiss HL, Evers BM . Nuclear factor of activated T-cells 5 increases intestinal goblet cell differentiation through an mTOR/Notch signaling pathway. Mol Biol Cell 2014; 25: 2882–2890.

    PubMed  PubMed Central  Google Scholar 

  32. Phuong TT, Yun YH, Kim SJ, Kang TM . Positive feedback control between STIM1 and NFATc3 is required for C2C12 myoblast differentiation. Biochem Biophys Res Commun 2013; 430: 722–728.

    CAS  PubMed  Google Scholar 

  33. Barral AM, Kallstrom R, Sander B, Rosen A . Thioredoxin, thioredoxin reductase and tumour necrosis factor-alpha expression in melanoma cells: correlation to resistance against cytotoxic attack. Melanoma Res 2000; 10: 331–343.

    CAS  PubMed  Google Scholar 

  34. Oliver JL, Alexander MP, Norrod AG, Mullins IM, Mullins DW . Differential expression and tumor necrosis factor-mediated regulation of TNFRSF11b/osteoprotegerin production by human melanomas. Pigment Cell Melanoma Res 2013; 26: 571–579.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lopez-Rodriguez C, Aramburu J, Jin L, Rakeman AS, Michino M, Rao A . Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 2001; 15: 47–58.

    CAS  PubMed  Google Scholar 

  36. Minematsu H, Shin MJ, Celil Aydemir AB, Kim KO, Nizami SA, Chung GJ et al. Nuclear presence of nuclear factor of activated T cells (NFAT) c3 and c4 is required for Toll-like receptor-activated innate inflammatory response of monocytes/macrophages. Cell Signal 2011; 23: 1785–1793.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrence MC, Naziruddin B, Levy MF, Jackson A, McGlynn K . Calcineurin/nuclear factor of activated T cells and MAPK signaling induce TNF-{alpha} gene expression in pancreatic islet endocrine cells. J Biol Chem 2011; 286: 1025–1036.

    CAS  PubMed  Google Scholar 

  38. Pouryazdanparast P, Brenner A, Haghighat Z, Guitart J, Rademaker A, Gerami P . The role of 8q24 copy number gains and c-MYC expression in amelanotic cutaneous melanoma. Mod Pathol 2012; 25: 1221–1226.

    CAS  PubMed  Google Scholar 

  39. Shou J, Jing J, Xie J, You L, Jing Z, Yao J et al. Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett 2015; 361: 174–184.

    CAS  PubMed  Google Scholar 

  40. Prendergast GC . Mechanisms of apoptosis by c-Myc. Oncogene 1999; 18: 2967–2987.

    CAS  PubMed  Google Scholar 

  41. Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R . Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One 2008; 3: e2734.

    PubMed  PubMed Central  Google Scholar 

  42. Harris RG, White E, Phillips ES, Lillycrop KA . The expression of the developmentally regulated proto-oncogene Pax-3 is modulated by N-Myc. J Biol Chem 2002; 277: 34815–34825.

    CAS  PubMed  Google Scholar 

  43. Bonvin E, Falletta P, Shaw H, Delmas V, Goding CR . A phosphatidylinositol 3-kinase-Pax-3 axis regulates Brn-2 expression in melanoma. Mol Cell Biol 2012; 32: 4674–4683.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Daniotti M, Oggionni M, Ranzani T, Vallacchi V, Campi V, Di Stasi D et al. BRAF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene 2004; 23: 5968–5977.

    CAS  PubMed  Google Scholar 

  45. Anichini A, Mortarini R, Nonaka D, Molla A, Vegetti C, Montaldi E et al. Association of antigen-processing machinery and HLA antigen phenotype of melanoma cells with survival in American Joint Committee on Cancer stage III and IV melanoma patients. Cancer Res 2006; 66: 6405–6411.

    CAS  PubMed  Google Scholar 

  46. Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A et al. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 2006; 25: 3357–3364.

    CAS  PubMed  Google Scholar 

  47. Tassi E, Zanon M, Vegetti C, Molla A, Bersani I, Perotti V et al. Role of Apollon in human melanoma resistance to antitumor agents that activate the intrinsic or the extrinsic apoptosis pathways. Clin Cancer Res 2012; 18: 3316–3327.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grazia G, Vegetti C, Benigni F, Penna I, Perotti V, Tassi E et al. Synergistic anti-tumor activity and inhibition of angiogenesis by cotargeting of oncogenic and death receptor pathways in human melanoma. Cell Death Dis 2014; 5: e1434.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuan JS, Reed A, Chen F, Stewart CN Jr. . Statistical analysis of real-time PCR data. BMC Bioinformatics 2006; 7: 85.

    PubMed  PubMed Central  Google Scholar 

  50. Bellei B, Pitisci A, Catricala C, Larue L, Picardo M . Wnt/beta-catenin signaling is stimulated by alpha-melanocyte-stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell Melanoma Res 2011; 24: 309–325.

    CAS  PubMed  Google Scholar 

  51. Mortarini R, Scarito A, Nonaka D, Zanon M, Bersani I, Montaldi et al. Constitutive expression and costimulatory function of LIGHT/TNFSF14 on human melanoma cells and melanoma-derived microvesicles. Cancer Res 2005; 65: 3428–3436.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr L. De Cecco and Mr. E. Marchesi of the Functional Genomics Facility of Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, for qPCR and gene expression analysis, Ms. G. Nicolini for the skillfull technical work. This investigation was supported by grant #12020 #15860 (to RM) from Associazione Italiana per la Ricerca sul Cancro (A.I.R.C., Milan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Mortarini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perotti, V., Baldassari, P., Molla, A. et al. NFATc2 is an intrinsic regulator of melanoma dedifferentiation. Oncogene 35, 2862–2872 (2016). https://doi.org/10.1038/onc.2015.355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.355

This article is cited by

Search

Quick links