Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Breast cancer dissemination promoted by a neuregulin-collagenase 3 signalling node

Subjects

Abstract

Advances in the treatment of breast cancer have resulted in increased survival. However, in the metastatic setting, the disease remains incurable. Therefore, understanding of the mechanisms that promote dissemination of breast cancer cells may favor the development of novel therapeutic strategies to fight those tumors. Here, we show that the ErbB ligands, Neuregulins (NRGs), promote metastatic dissemination of breast cancer cells by switching on a kinase-metalloproteinase network. Clinicopathological analyses demonstrated that NRG expression in breast tumors associated to lymph node invasion and poor patient outcome. Preclinical in vivo analyses showed that NRG expression favored in situ tumor growth, local spreading and metastatic dissemination. Genomic, biochemical and functional studies identified matrix metalloproteinases, particularly stromelysin 2 and collagenase 3, as key mediators of the NRG-induced dissemination properties of breast cancer cells. Mechanistic analyses demonstrated that NRG augmented metalloproteinase expression through a route controlled by ERK1/2 kinases. ERK1/2 increased collagenase 3 expression by controlling the activity of an SBF1-related transcription factor. In conclusion, we describe a pathway linked to breast cancer dissemination. The clinical availability of agents that target some of the components of this signalling pathway suggests that patients with tumors fed by NRGs or other factors able to activate the ERK-Collagenase 3 route may benefit from agents that act on that signalling axis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  2. Vanharanta S, Massague J . Origins of metastatic traits. Cancer Cell 2013; 24: 410–421.

    Article  CAS  Google Scholar 

  3. Dawson SJ, Rueda OM, Aparicio S, Caldas C . A new genome-driven integrated classification of breast cancer and its implications. EMBO J 2013; 32: 617–628.

    Article  CAS  Google Scholar 

  4. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  Google Scholar 

  5. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  Google Scholar 

  6. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L . Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 2011; 9: 16–32.

    Article  Google Scholar 

  7. Ocana A, Pandiella A . Targeting HER receptors in cancer. Curr Pharm Des 2013; 19: 808–817.

    Article  CAS  Google Scholar 

  8. Kumler I, Tuxen MK, Nielsen DL . A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev 2014; 40: 259–270.

    Article  CAS  Google Scholar 

  9. Krane IM, Leder P . NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 1996; 12: 1781–1788.

    CAS  Google Scholar 

  10. Atlas E, Cardillo M, Mehmi I, Zahedkargaran H, Tang C, Lupu R . Heregulin is sufficient for the promotion of tumorigenicity and metastasis of breast cancer cells in vivo. Mol Cancer Res 2003; 1: 165–175.

    CAS  Google Scholar 

  11. Tsai MS, Shamon-Taylor LA, Mehmi I, Tang CK, Lupu R . Blockage of heregulin expression inhibits tumorigenicity and metastasis of breast cancer. Oncogene 2003; 22: 761–768.

    Article  CAS  Google Scholar 

  12. Aguilar Z, Akita RW, Finn RS, Ramos BL, Pegram MD, Kabbinavar FF et al. Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 1999; 18: 6050–6062.

    Article  CAS  Google Scholar 

  13. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW et al. Identification of heregulin, a specific activator of p185erbB2. Science 1992; 256: 1205–1210.

    Article  CAS  Google Scholar 

  14. Yuste L, Montero JC, Esparis-Ogando A, Pandiella A . Activation of ErbB2 by overexpression or by transmembrane neuregulin results in differential signaling and sensitivity to herceptin. Cancer Res 2005; 65: 6801–6810.

    Article  CAS  Google Scholar 

  15. Phillips GD, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K et al. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res 2014; 20: 456–468.

    Article  CAS  Google Scholar 

  16. Lee CY, Lin Y, Bratman SV, Feng W, Kuo AH, Scheeren FA et al. Neuregulin autocrine signaling promotes self-renewal of breast tumor-initiating cells by triggering HER2/HER3 activation. Cancer Res 2014; 74: 341–352.

    Article  CAS  Google Scholar 

  17. de Alava E, Ocana A, Abad M, Montero JC, Esparis-Ogando A, Rodriguez CA et al. Neuregulin expression modulates clinical response to trastuzumab in patients with metastatic breast cancer. J Clin Oncol 2007; 25: 2656–2663.

    Article  CAS  Google Scholar 

  18. Montero JC, Rodriguez-Barrueco R, Ocana A, Diaz-Rodriguez E, Esparis-Ogando A, Pandiella A . Neuregulins and cancer. Clin Cancer Res 2008; 14: 3237–3241.

    Article  CAS  Google Scholar 

  19. Arteaga CL, Engelman JA . ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 2014; 25: 282–303.

    Article  CAS  Google Scholar 

  20. Paik S, Kim C, Wolmark N . HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med 2008; 358: 1409–1411.

    Article  CAS  Google Scholar 

  21. Perez EA, Reinholz MM, Hillman DW, Tenner KS, Schroeder MJ, Davidson NE et al. HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. J Clin Oncol 2010; 28: 4307–4315.

    Article  Google Scholar 

  22. Montero JC, Rodriguez-Barrueco R, Yuste L, Juanes PP, Borges J, Esparis-Ogando A et al. The extracellular linker of pro-neuregulin-alpha2c is required for efficient sorting and juxtacrine function. Mol Biol Cell 2007; 18: 380–393.

    Article  CAS  Google Scholar 

  23. Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009; 16: 67–78.

    Article  CAS  Google Scholar 

  24. Freije JM, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 1994; 269: 16766–16773.

    CAS  PubMed  Google Scholar 

  25. Morrison C, Mancini S, Cipollone J, Kappelhoff R, Roskelley C, Overall C . Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem 2011; 286: 34271–34285.

    Article  CAS  Google Scholar 

  26. Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S et al. Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer 2008; 8: 83.

    Article  Google Scholar 

  27. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  Google Scholar 

  28. Diaz-Rodriguez E, Montero JC, Esparis-Ogando A, Yuste L, Pandiella A . Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol Biol Cell 2002; 13: 2031–2044.

    Article  CAS  Google Scholar 

  29. Kiran U, Abdin MZ . Computational predictions of common transcription factor binding sites on the genes of proline metabolism in plants. Bioinformation 2012; 8: 886–890.

    Article  Google Scholar 

  30. Lawton MA, Dean SM, Dron M, Kooter JM, Kragh KM, Harrison MJ et al. Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1. Plant Mol Biol 1991; 16: 235–249.

    Article  CAS  Google Scholar 

  31. Revillion F, Lhotellier V, Hornez L, Bonneterre J, Peyrat JP . ErbB/HER ligands in human breast cancer, and relationships with their receptors, the bio-pathological features and prognosis. Ann Oncol 2008; 19: 73–80.

    Article  CAS  Google Scholar 

  32. Shames DS, Carbon J, Walter K, Jubb AM, Kozlowski C, Januario T et al. High heregulin expression is associated with activated HER3 and may define an actionable biomarker in patients with squamous cell carcinomas of the head and neck. PLoS One 2013; 8: e56765.

    Article  CAS  Google Scholar 

  33. Kessenbrock K, Plaks V, Werb Z . Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 52–67.

    Article  CAS  Google Scholar 

  34. Pivetta E, Scapolan M, Pecolo M, Wassermann B, Abu-Rumeileh I, Balestreri L et al. MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases. Breast Cancer Res 2011; 13: R105.

    Article  CAS  Google Scholar 

  35. Roy R, Yang J, Moses MA . Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 2009; 27: 5287–5297.

    Article  CAS  Google Scholar 

  36. Shah M, Huang D, Blick T, Connor A, Reiter LA, Hardink JR et al. An MMP13-selective inhibitor delays primary tumor growth and the onset of tumor-associated osteolytic lesions in experimental models of breast cancer. PLoS One 2012; 7: e29615.

    Article  CAS  Google Scholar 

  37. Montero JC, Esparis-Ogando A, Re-Louhau MF, Seoane S, Abad M, Calero R et al. Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer. Oncogene 2014; 33: 148–156.

    Article  CAS  Google Scholar 

  38. Seoane S, Montero JC, Ocana A, Pandiella A . Effect of multikinase inhibitors on caspase-independent cell death and DNA damage in HER2-overexpressing breast cancer cells. J Natl Cancer Inst 2010; 102: 1432–1446.

    Article  CAS  Google Scholar 

  39. Cabrera N, Diaz-Rodriguez E, Becker E, Martin-Zanca D, Pandiella A . TrkA receptor ectodomain cleavage generates a tyrosine-phosphorylated cell-associated fragment. J Cell Biol 1996; 132: 427–436.

    Article  CAS  Google Scholar 

  40. Montero JC, Yuste L, Diaz-Rodriguez E, Esparis-Ogando A, Pandiella A . Differential shedding of transmembrane neuregulin isoforms by the tumor necrosis factor-alpha-converting enzyme. Mol Cell Neurosci 2000; 16: 631–648.

    Article  CAS  Google Scholar 

  41. Li C, Wong WH . Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001; 98: 31–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ministry of Economy and Competitiveness of Spain (BFU2009-07728 and BFU2012-39151), the Instituto de Salud Carlos III through the Spanish Cancer Centers Network Program (RD06/0020/0041 and RD12/0036/0003) and the Scientific Foundation of the Spanish Association Against Cancer (AECC). SSR was supported by a Juan de la Cierva contract. JCM is a recipient of a Miguel Servet fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Pandiella.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seoane, S., Montero, J., Ocaña, A. et al. Breast cancer dissemination promoted by a neuregulin-collagenase 3 signalling node. Oncogene 35, 2756–2765 (2016). https://doi.org/10.1038/onc.2015.337

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.337

This article is cited by

Search

Quick links