Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF-kB2 induces senescence bypass in melanoma via a direct transcriptional activation of EZH2

A Corrigendum to this article was published on 26 May 2016

Abstract

Enhancer of Zeste homologue 2 (EZH2) belongs to the polycomb repressive complex 2 and catalyzes the methylation of histone H3 lysine 27. These pivotal epigenetic marks are altered in many cancers, including melanoma, as a result of EZH2 overexpression. Here, we show that the non-canonical-NF-kB pathway accounts for most of the NF-kB activity in melanoma cells, in contrast to non-cancer cells. We identify the non-canonical-NF-kB pathway as a key regulator of EZH2 expression in melanoma. We show a striking correlation between NF-kB2 and EZH2 expression in human melanoma metastases. We demonstrate that inhibition of the non-canonical NF-kB pathway by targeting NF-kB2/p52 or the upstream kinase NIK restores the senescence program in melanoma cells through the decrease of EZH2. On the contrary, the overexpression of NF-kB2/p52 in normal human melanocytes prevents stress- and oncogene-induced senescence. Finally, we show in mouse models that the inhibition of the non-canonical NF-kB pathway restores senescence and induces a dramatic reduction in tumor growth compared with controls, thus providing potential drug targets for the re-induction of senescence in melanoma and other cancers where EZH2 is overexpressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298: 1039–1043.

    CAS  Google Scholar 

  2. Chang CJ, Hung MC . The role of EZH2 in tumour progression. Br J Cancer 2012; 106: 243–247.

    Article  CAS  Google Scholar 

  3. Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev 2012; 31: 753–761.

    Article  CAS  Google Scholar 

  4. Dukers DF, van Galen JC, Giroth C, Jansen P, Sewalt RG, Otte AP et al. Unique polycomb gene expression pattern in Hodgkin's lymphoma and Hodgkin's lymphoma-derived cell lines. Am J Pathol 2004; 164: 873–881.

    Article  CAS  Google Scholar 

  5. Croonquist PA, Van Ness B . The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype. Oncogene 2005; 24: 6269–6280.

    Article  CAS  Google Scholar 

  6. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  Google Scholar 

  7. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  Google Scholar 

  8. Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H et al. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 2005; 92: 1754–1758.

    Article  CAS  Google Scholar 

  9. Arisan S, Buyuktuncer ED, Palavan-Unsal N, Caskurlu T, Cakir OO, Ergenekon E . Increased expression of EZH2, a polycomb group protein, in bladder carcinoma. Urol Int 2005; 75: 252–257.

    Article  CAS  Google Scholar 

  10. McHugh JB, Fullen DR, Ma L, Kleer CG, Su LD . Expression of polycomb group protein EZH2 in nevi and melanoma. J Cutan Pathol 2007; 34: 597–600.

    Article  Google Scholar 

  11. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2006; 24: 268–273.

    Article  CAS  Google Scholar 

  12. Zingg D, Debbache J, Schaefer SM, Tuncer E, Frommel SC, Cheng P et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun 2015; 6: 6051.

    Article  CAS  Google Scholar 

  13. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007; 21: 525–530.

    Article  CAS  Google Scholar 

  14. Kheradmand Kia S, Solaimani Kartalaei P, Farahbakhshian E, Pourfarzad F, von Lindern M, Verrijzer CP . EZH2-dependent chromatin looping controls INK4a and INK4b, but not ARF, during human progenitor cell differentiation and cellular senescence. Epigenetics Chromatin 2009; 2: 16.

    Article  Google Scholar 

  15. Fan T, Jiang S, Chung N, Alikhan A, Ni C, Lee CC et al. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res 2011; 9: 418–429.

    Article  CAS  Google Scholar 

  16. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479: 547–551.

    Article  CAS  Google Scholar 

  17. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    Article  CAS  Google Scholar 

  18. Ewald JA, Desotelle JA, Wilding G, Jarrard DF . Therapy-induced senescence in cancer. J Natl Cancer Inst 2010; 102: 1536–1546.

    Article  CAS  Google Scholar 

  19. Dhawan P, Richmond A . A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 2002; 277: 7920–7928.

    Article  CAS  Google Scholar 

  20. Thu YM, Richmond A . NF-kappaB inducing kinase: a key regulator in the immune system and in cancer. Cytokine Growth Factor Rev 2010; 21: 213–226.

    Article  CAS  Google Scholar 

  21. Thu YM, Su Y, Yang J, Splittgerber R, Na S, Boyd A et al. NF-kappaB inducing kinase (NIK) modulates melanoma tumorigenesis by regulating expression of pro-survival factors through the beta-catenin pathway. Oncogene 2012; 31: 2580–2592.

    Article  CAS  Google Scholar 

  22. Boisvert M, Cote S, Vargas A, Pasvanis S, Bounou S, Barbeau B et al. PGJ2 antagonizes NF-kappaB-induced HIV-1 LTR activation in colonic epithelial cells. Virology 2008; 380: 1–11.

    Article  CAS  Google Scholar 

  23. Su J, Liu F, Xia M, Xu Y, Li X, Kang J et al. p62 participates in the inhibition of NF-kappaB signaling and apoptosis induced by sulfasalazine in human glioma U251 cells. Oncol Rep 2015; 34: 235–243.

    Article  CAS  Google Scholar 

  24. Tergaonkar V, Correa RG, Ikawa M, Verma IM . Distinct roles of IkappaB proteins in regulating constitutive NF-kappaB activity. Nat Cell Biol 2005; 7: 921–923.

    Article  CAS  Google Scholar 

  25. Beinke S, Ley SC . Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 2004; 382: 393–409.

    Article  CAS  Google Scholar 

  26. Hoffmann A, Baltimore D . Circuitry of nuclear factor kappaB signaling. Immunol Rev 2006; 210: 171–186.

    Article  Google Scholar 

  27. Dejardin E . The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72: 1161–1179.

    Article  CAS  Google Scholar 

  28. Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME . Epigenetic regulation in human melanoma: Past and future. Epigenetics 2015; 10: 103–121.

    Article  Google Scholar 

  29. Chandra T, Kirschner K, Thuret JY, Pope BD, Ryba T, Newman S et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell 2012; 47: 203–214.

    Article  CAS  Google Scholar 

  30. Chen Q, Ames BN . Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA 1994; 91: 4130–4134.

    Article  CAS  Google Scholar 

  31. Rufini A, Tucci P, Celardo I, Melino G . Senescence and aging: the critical roles of p53. Oncogene 2013; 32: 5129–5143.

    Article  CAS  Google Scholar 

  32. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    Article  CAS  Google Scholar 

  33. Sun SC . The noncanonical NF-kappaB pathway. Immunol Rev 2012; 246: 125–140.

    Article  Google Scholar 

  34. Li K, McGee LR, Fisher B, Sudom A, Liu J, Rubenstein SM et al. Inhibiting NF-kappaB-inducing kinase (NIK): discovery, structure-based design, synthesis, structure-activity relationship, and co-crystal structures. Bioorg Med Chem Lett 2013; 23: 1238–1244.

    Article  CAS  Google Scholar 

  35. Ciana P, Neri A, Cappellini C, Cavallo F, Pomati M, Chang CC et al. Constitutive expression of lymphoma-associated NFKB-2/Lyt-10 proteins is tumorigenic in murine fibroblasts. Oncogene 1997; 14: 1805–1810.

    Article  CAS  Google Scholar 

  36. Wharry CE, Haines KM, Carroll RG, May MJ . Constitutive non-canonical NFkappaB signaling in pancreatic cancer cells. Cancer Biol Ther 2009; 8: 1567–1576.

    Article  CAS  Google Scholar 

  37. Rovillain E, Mansfield L, Caetano C, Alvarez-Fernandez M, Caballero OL, Medema RH et al. Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene 2011; 30: 2356–2366.

    Article  CAS  Google Scholar 

  38. Sun SC . Non-canonical NF-kappaB signaling pathway. Cell Res 2011; 21: 71–85.

    Article  CAS  Google Scholar 

  39. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    Article  CAS  Google Scholar 

  40. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455–2465.

    Article  CAS  Google Scholar 

  41. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    Article  CAS  Google Scholar 

  42. Razani B, Reichardt AD, Cheng G . Non-canonical NF-kappaB signaling activation and regulation: principles and perspectives. Immunol Rev 2011; 244: 44–54.

    Article  CAS  Google Scholar 

  43. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 2012; 490: 412–416.

    Article  CAS  Google Scholar 

  44. Larribere L, Khaled M, Tartare-Deckert S, Busca R, Luciano F, Bille K et al. PI3K mediates protection against TRAIL-induced apoptosis in primary human melanocytes. Cell Death Differ 2004; 11: 1084–1091.

    Article  CAS  Google Scholar 

  45. Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 2005; 37: 1047–1054.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Fondation ARC, and the Société Française de Recherche en Dermatologie (SRD). The authors would like to thank Professor Robert Weinberg from the MIT Ludiwig Center for Molecular Biology for kindly providing the Mel-ST cells.

Author contributions

ELP, GMDD and TP designed the experiments and wrote the manuscript; ELP and GMDD performed the majority of the experiments; AP performed the initial screening of drug activity in patients’ cells; YC performed the FACS measurement of the H3K9me3 levels; VH, KZ and PH performed the histology staining for melanoma; MA and PB isolated cells from the patients’ metastases and performed the mutational analysis; and SR, CB and RB provided reagents, helpful discussions and critical revisions for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Passeron.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Donatis, G., Pape, E., Pierron, A. et al. NF-kB2 induces senescence bypass in melanoma via a direct transcriptional activation of EZH2. Oncogene 35, 2735–2745 (2016). https://doi.org/10.1038/onc.2015.331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.331

This article is cited by

Search

Quick links