Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2

Abstract

The Kruppel-like factor 5 (KLF5) transcription factor is highly expressed in high-grade and basal-like breast cancers. However, the mechanism by which KLF5 promotes cell migration and invasion is still not completely understood. In this study, we demonstrate that TNFAIP2, a tumor necrosis factor-α (TNFα)-induced gene, is a direct KLF5 target gene. The expression of TNFAIP2 is highly correlated with the expression of KLF5 in breast cancers. The manipulation of KLF5 expression positively alters TNFAIP2 expression levels. KLF5 directly binds to the TNFAIP2 gene promoter and activates its transcription. Functionally, KLF5 promotes cancer cell proliferation, migration and invasion in part through TNFAIP2. TNFAIP2 interacts with the two small GTPases Rac1 and Cdc42, thereby increasing their activities to change actin cytoskeleton and cell morphology. These findings collectively suggest that TNFAIP2 is a direct KLF5 target gene, and both KLF5 and TNFAIP2 promote breast cancer cell proliferation, migration and invasion through Rac1 and Cdc42.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Maxmen A . The hard facts. Nature 2012; 485: S50–S51.

    Article  PubMed  Google Scholar 

  2. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007; 13: 4429–4434.

    Article  PubMed  Google Scholar 

  3. Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 2006; 24: 5652–5657.

    Article  PubMed  Google Scholar 

  4. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen CJ, Lin SE, Lin YM, Lin SH, Chen DR, Chen CL . Association of expression of kruppel-like factor 4 and kruppel-like factor 5 with the clinical manifestations of breast cancer. Pathol Oncol Res 2012; 18: 161–168.

    Article  CAS  PubMed  Google Scholar 

  6. Tong D, Czerwenka K, Heinze G, Ryffel M, Schuster E, Witt A et al. Expression of KLF5 is a prognostic factor for disease-free survival and overall survival in patients with breast cancer. Clin Cancer Res Research 2006; 12: 2442–2448.

    Article  CAS  Google Scholar 

  7. Takagi K, Miki Y, Onodera Y, Nakamura Y, Ishida T, Watanabe M et al. Kruppel-like factor 5 in human breast carcinoma: a potent prognostic factor induced by androgens. Endocr Relat Cancer 2012; 19: 741–750.

    Article  CAS  PubMed  Google Scholar 

  8. Dong JT, Chen C . Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 2009; 66: 2691–2706.

    Article  CAS  PubMed  Google Scholar 

  9. Kojima S, Kobayashi A, Gotoh O, Ohkuma Y, Fujii-Kuriyama Y, Sogawa K . Transcriptional activation domain of human BTEB2, a GC box-binding factor. J Biochem 1997; 121: 389–396.

    Article  CAS  PubMed  Google Scholar 

  10. Sogawa K, Imataka H, Yamasaki Y, Kusume H, Abe H, Fujii-Kuriyama Y . cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res 1993; 21: 1527–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aizawa K, Suzuki T, Kada N, Ishihara A, Kawai-Kowase K, Matsumura T et al. Regulation of platelet-derived growth factor-A chain by Kruppel-like factor 5: new pathway of cooperative activation with nuclear factor-kappaB. J Biol Chem 2004; 279: 70–76.

    Article  CAS  PubMed  Google Scholar 

  12. Bateman NW, Tan D, Pestell RG, Black JD, Black AR . Intestinal tumor progression is associated with altered function of KLF5. J Biol Chem 2004; 279: 12093–12101.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki T, Sawaki D, Aizawa K, Munemasa Y, Matsumura T, Ishida J et al. Kruppel-like factor 5 shows proliferation-specific roles in vascular remodeling, direct stimulation of cell growth, and inhibition of apoptosis. J Biol Chem 2009; 284: 9549–9557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu N, Gu L, Findley HW, Chen C, Dong JT, Yang L et al. KLF5 interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem 2006; 281: 14711–14718.

    Article  CAS  PubMed  Google Scholar 

  15. He M, Han M, Zheng B, Shu YN, Wen JK . Angiotensin II stimulates KLF5 phosphorylation and its interaction with c-Jun leading to suppression of p21 expression in vascular smooth muscle cells. J Biochem 2009; 146: 683–691.

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Nie Z, Zhou Z, Zhang H, Liu R, Wu J et al. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1. Oncotarget 2015, e-pub ahead of print 22 April 2015.

  17. Zheng HQ, Zhou Z, Huang J, Chaudhury L, Dong JT, Chen C . Kruppel-like factor 5 promotes breast cell proliferation partially through upregulating the transcription of fibroblast growth factor binding protein 1. Oncogene 2009; 28: 3702–3713.

    Article  CAS  PubMed  Google Scholar 

  18. Xia H, Wang C, Chen W, Zhang H, Chaudhury L, Zhou Z et al. Kruppel-like factor 5 transcription factor promotes microsomal prostaglandin E2 synthase 1 gene transcription in breast cancer. J Biol Chem 2013; 288: 26731–26740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, Tetreault MP, Yermolina YA, Goldstein BG, Katz JP . Kruppel-like factor 5 controls keratinocyte migration via the integrin-linked kinase. J Biol Chem 2008; 283: 18812–18820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen C, Benjamin MS, Sun X, Otto KB, Guo P, Dong XY et al. KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int J Cancer 2006; 118: 1346–1355.

    Article  CAS  PubMed  Google Scholar 

  21. Sarma V, Wolf FW, Marks RM, Shows TB, Dixit VM . Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J Immunol 1992; 148: 3302–3312.

    CAS  PubMed  Google Scholar 

  22. Wolf FW, Sarma V, Seldin M, Drake S, Suchard SJ, Shao H et al. B94, a primary response gene inducible by tumor necrosis factor-alpha, is expressed in developing hematopoietic tissues and the sperm acrosome. J Biol Chem 1994; 269: 3633–3640.

    CAS  PubMed  Google Scholar 

  23. Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 2011; 147: 853–867.

    Article  CAS  PubMed  Google Scholar 

  24. Ma Y, Koza-Taylor PH, DiMattia DA, Hames L, Fu H, Dragnev KH et al. Microarray analysis uncovers retinoid targets in human bronchial epithelial cells. Oncogene 2003; 22: 4924–4932.

    Article  CAS  PubMed  Google Scholar 

  25. Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 2009; 11: 1427–1432.

    Article  CAS  PubMed  Google Scholar 

  26. Kimura S, Hase K, Ohno H . Tunneling nanotubes: emerging view of their molecular components and formation mechanisms. Exp Cell Res 2012; 318: 1699–1706.

    Article  CAS  PubMed  Google Scholar 

  27. Chen LC, Chen CC, Liang Y, Tsang NM, Chang YS, Hsueh C . A novel role for TNFAIP2: its correlation with invasion and metastasis in nasopharyngeal carcinoma. Mod Pathol 2011; 24: 175–184.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao D, Zheng HQ, Zhou Z, Chen C . The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res 2010; 70: 4728–4738.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao D, Zhi X, Zhou Z, Chen C . TAZ antagonizes the WWP1-mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis. Carcinogenesis 2012; 33: 59–67.

    Article  CAS  PubMed  Google Scholar 

  30. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709.

    Article  CAS  PubMed  Google Scholar 

  31. Vega FM, Ridley AJ . Rho GTPases in cancer cell biology. FEBS Lett 2008; 582: 2093–2101.

    Article  CAS  PubMed  Google Scholar 

  32. McConnell BB, Bialkowska AB, Nandan MO, Ghaleb AM, Gordon FJ, Yang VW . Haploinsufficiency of Kruppel-like factor 5 rescues the tumor-initiating effect of the Apc(Min) mutation in the intestine. Cancer Res 2009; 69: 4125–4133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu R, Zhou Z, Zhao D, Chen C . The induction of KLF5 transcription factor by progesterone contributes to progesterone-induced breast cancer cell proliferation and dedifferentiation. Mol Endocrinol 2011; 25: 1137–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bafford R, Sui XX, Wang G, Conte M . Angiotensin II and tumor necrosis factor-alpha upregulate survivin and Kruppel-like factor 5 in smooth muscle cells: potential relevance to vein graft hyperplasia. Surgery 2006; 140: 289–296.

    Article  PubMed  Google Scholar 

  35. Chanchevalap S, Nandan MO, McConnell BB, Charrier L, Merlin D, Katz JP et al. Kruppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells. Nucleic Acids Res 2006; 34: 1216–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mori A, Moser C, Lang SA, Hackl C, Gottfried E, Kreutz M et al. Up-regulation of Kruppel-like factor 5 in pancreatic cancer is promoted by interleukin-1beta signaling and hypoxia-inducible factor-1alpha. Mol Cancer Res 2009; 7: 1390–1398.

    Article  CAS  PubMed  Google Scholar 

  37. Sur I, Unden AB, Toftgard R . Human Kruppel-like factor5/KLF5: synergy with NF-kappaB/Rel factors and expression in human skin and hair follicles. Eur J Cell Biol 2002; 81: 323–334.

    Article  CAS  PubMed  Google Scholar 

  38. Chen C, Bhalala HV, Qiao H, Dong JT . A possible tumor suppressor role of the KLF5 transcription factor in human breast cancer. Oncogene 2002; 21: 6567–6572.

    Article  CAS  PubMed  Google Scholar 

  39. Hall A . Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509–514.

    Article  CAS  PubMed  Google Scholar 

  40. Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP . The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 1999; 96: 2122–2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ikeda M, Ishida O, Hinoi T, Kishida S, Kikuchi A . Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of Ral. J Biol Chem 1998; 273: 814–821.

    Article  CAS  PubMed  Google Scholar 

  42. Ohno H, Hase K, Kimura S . M-Sec: emerging secrets of tunneling nanotube formation. Commun Integr Biol 2010; 3: 231–233.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Abounit S, Zurzolo C . Wiring through tunneling nanotubes—from electrical signals to organelle transfer. J Cell Sci 2012; 125: 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  44. Davis DM, Sowinski S . Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 2008; 9: 431–436.

    Article  CAS  PubMed  Google Scholar 

  45. Gerdes HH, Bukoreshtliev NV, Barroso JF . Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 2007; 581: 2194–2201.

    Article  CAS  PubMed  Google Scholar 

  46. Schiller C, Diakopoulos KN, Rohwedder I, Kremmer E, von Toerne C, Ueffing M et al. LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. J Cell Sci 2013; 126: 767–777.

    Article  CAS  PubMed  Google Scholar 

  47. Shi X, Liu M, Li D, Wang J, Aneja R, Zhou J . Cep70 contributes to angiogenesis by modulating microtubule rearrangement and stimulating cell polarization and migration. Cell Cycle 2012; 11: 1554–1563.

    Article  CAS  PubMed  Google Scholar 

  48. Chen C, Sun X, Ran Q, Wilkinson KD, Murphy TJ, Simons JW et al. Ubiquitin-proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells. Oncogene 2005; 24: 3319–3327.

    Article  CAS  PubMed  Google Scholar 

  49. Shi H, Zhang Z, Wang X, Liu S, Teng CT . Isolation and characterization of a gene encoding human Kruppel-like factor 5 (IKLF): binding to the CAAT/GT box of the mouse lactoferrin gene promoter. Nucleic Acids Res 1999; 27: 4807–4815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen C, Zhou Z, Ross JS, Zhou W, Dong JT . The amplified WWP1 gene is a potential molecular target in breast cancer. Int J Cancer 2007; 121: 80–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Jun Zhou at Nankai University for providing reagents and Professor Ping Wang from Tongji University for bioinformatics analysis. This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Stem Cell and Regenerative Medicine Research (XDA01040406) and the National Natural Science Foundation of China (81120108019, 81325016, U1132605, 81322038 and 81272930) West Light Foundation of Chinese Academy of Sciences (to RL) and Shanghai Health System outstanding academic leader training program (XBR2013114 to JF).

Author contributions

LJ conceived, performed most experiments and analyzed the data. ZZ, ZW, JW, CW, HZ, PS, FL, HL, YW, WC and RL assisted or performed experiments and analyzed the data. CC and JF conceived the project, designed experiments, analyzed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Feng or C Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Zhou, Z., Liang, H. et al. KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene 35, 2040–2051 (2016). https://doi.org/10.1038/onc.2015.263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.263

This article is cited by

Search

Quick links