Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Multidrug resistance protein 3 loss promotes tumor formation by inducing senescence escape

Abstract

Oncogenic-stress-induced senescence (OIS) is a stress response allowing normal cells, when receiving oncogenic signals, to stably arrest their proliferation. OIS thus acts to prevent aberrant cell proliferation and tumor formation. To identify novel tumor suppressive pathways, we have recently completed a loss-of-function genetic screen to identify novel genes promoting escape from OIS and thus, potentially, tumor formation when their functions are lost. Using this approach, we unexpectedly found that loss of function of the multidrug resistance protein 3 (MRP3 or ABCC3) promotes escape from OIS in human epithelial cells. Importantly, ABCC3 expression is reduced in human skin tumors, and ABCC3-knockout mice display increased sensitivity to RAS-induced skin carcinogenesis, concomitantly with decreased OIS. ABCC3 participates in resistance to chemotherapy via its transporter activity. Our data show that this transporter activity is involved in ABCC3-induced senescence, demonstrating that this protein has a complex role in cancer, since its loss of function may promote escape from OIS and tumor formation whereas its gain of function promotes resistance to chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479: 547–551.

    Article  CAS  Google Scholar 

  2. Collado M, Serrano M . Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010; 10: 51–57.

    Article  CAS  Google Scholar 

  3. Ben Porath I, Weinberg RA . When cells get stressed: an integrative view of cellular senescence. J Clin Invest 2004; 113: 8–13.

    Article  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  5. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 2010; 17: 236–245.

    Article  CAS  Google Scholar 

  6. Ewald JA, Desotelle JA, Wilding G, Jarrard DF . Therapy-induced senescence in cancer. J Natl Cancer Inst 2010; 102: 1536–1546.

    Article  CAS  Google Scholar 

  7. Humbert N, Navaratnam N, Augert A, Da Costa M, Martien S, Wang J et al. Regulation of ploidy and senescence by the AMPK-related kinase NUAK1. EMBO J 2010; 29: 376–386.

    Article  CAS  Google Scholar 

  8. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 2010; 464: 374–379.

    Article  CAS  Google Scholar 

  9. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S et al. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell 2010; 141: 717–727.

    Article  CAS  Google Scholar 

  10. Cipriano R, Kan CE, Graham J, Danielpour D, Stampfer M, Jackson MW . TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci USA 2011; 108: 8668–8673.

    Article  CAS  Google Scholar 

  11. Bianchi-Smiraglia A, Nikiforov MA . Controversial aspects of oncogene-induced senescence. Cell Cycle 2012; 11: 4147–4151.

    Article  CAS  Google Scholar 

  12. Nelson DM, McBryan T, Jeyapalan JC, Sedivy JM, Adams PD . A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging. Age (Dordr) 2014; 36: 9637.

    Article  Google Scholar 

  13. Zhang H, Pan KH, Cohen SN . Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci USA 2003; 100: 3251–3256.

    Article  CAS  Google Scholar 

  14. Lallet-Daher H, Wiel C, Gitenay D, Navaratnam N, Augert A, Le Cavé B et al. Potassium Channel KCNA1 Modulates Oncogene-Induced Senescence and Transformation. Cancer Res 2013; 73: 5253–5265.

    Article  CAS  Google Scholar 

  15. Wiel C, Lallet-Daher H, Gitenay D, gras B, Le Calvé B, Augert A et al. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun 2014; 5: 3792.

    Article  CAS  Google Scholar 

  16. Gitenay D, Lallet-Daher H, Bernard D . Caspase-2 regulates oncogene-induced senescence. Oncotarget 2014; 5: 5845–5847.

    Article  Google Scholar 

  17. Chen ZS, Tiwari AK . Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011; 278: 3226–3245.

    Article  CAS  Google Scholar 

  18. Fletcher JI, Haber M, Henderson MJ, Norris MD . ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010; 10: 147–156.

    Article  CAS  Google Scholar 

  19. Kruh GD, Belinsky MG . The MRP family of drug efflux pumps. Oncogene 2003; 22: 7537–7552.

    Article  CAS  Google Scholar 

  20. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ . Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84–88.

    Article  CAS  Google Scholar 

  21. Gitenay D, Wiel C, Lallet-Daher H, Vindrieux D, Aubert S, Payen L et al. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence. Cell Death Dis 2014; 5: e1089.

    Article  CAS  Google Scholar 

  22. Wiel C, Augert A, Vincent DF, Gitenay D, Vindrieux D, Le Calvé B et al. Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis. Cell Death Dis 2013; 4: e855.

    Article  CAS  Google Scholar 

  23. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    Article  CAS  Google Scholar 

  24. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

    Article  CAS  Google Scholar 

  25. Kool M, van der Linden M, de HM, Scheffer GL, de Vree JM, Smith AJ et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci USA 1999; 96: 6914–6919.

    Article  CAS  Google Scholar 

  26. Henderson MJ, Haber M, Porro A, Munoz MA, Iraci N, Xue C et al. ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. J Natl Cancer Inst 2011; 103: 1236–1251.

    Article  CAS  Google Scholar 

  27. Deeley RG, Westlake C, Cole SP . Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86: 849–899.

    Article  CAS  Google Scholar 

  28. van de Wetering K, Feddema W, Helms JB, Brouwers JF, Borst P . Targeted metabolomics identifies glucuronides of dietary phytoestrogens as a major class of MRP3 substrates in vivo. Gastroenterology 2009; 137: 1725–1735.

    Article  CAS  Google Scholar 

  29. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15: 978–990.

    Article  CAS  Google Scholar 

  30. Kuilman T, Peeper DS . Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9: 81–94.

    Article  CAS  Google Scholar 

  31. Abel EL, Angel JM, Kiguchi K, DiGiovanni J . Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc 2009; 4: 1350–1362.

    Article  CAS  Google Scholar 

  32. Bizub D, Wood AW, Skalka AM . Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons. Proc Natl Acad Sci USA 1986; 83: 6048–6052.

    Article  CAS  Google Scholar 

  33. Vindrieux D, Augert A, Girard CA, Gitenay D, Lallet-Daher H, Wiel C et al. PLA2R1 mediates tumor suppression by activating JAK2. Cancer Res 2013; 73: 6334–6345.

    Article  CAS  Google Scholar 

  34. Zelcer N, van de Wetering K, de WR, Scheffer GL, Marschall HU, Wielinga PR et al. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. J Hepatol 2006; 44: 768–775.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Léa Payen for advice and Sarah Kabani for critical reading of the manuscript. This work was carried out with the support of the French National Cancer Institute (grants plbio 2010-181), the ‘Ligue contre le Cancer, comité de la Savoie’, the ‘Fondation ARC’, and the ‘RTRS Fondation Synergie Lyon Cancer’. CW is supported by the ‘Ligue Nationale contre le Cancer’ and the ‘Fondation pour la Recherche Médicale’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Bernard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiel, C., Gras, B., Vindrieux, D. et al. Multidrug resistance protein 3 loss promotes tumor formation by inducing senescence escape. Oncogene 35, 1596–1601 (2016). https://doi.org/10.1038/onc.2015.218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.218

This article is cited by

Search

Quick links