Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies

Subjects

Abstract

Owing to its aggressiveness, late detection and marginal therapeutic accessibility, pancreatic ductal adenocarcinoma (PDAC) remains a most challenging malignant disease. Despite scientific progress in the understanding of the mechanisms that underly PDAC initiation and progression, the successful translation of experimental findings into effective new therapeutic strategies remains a largely unmet need. The oncogene MYC is activated in many PDAC cases and is a master regulator of vital cellular processes. Excellent recent studies have shed new light on the tremendous functions of MYC in cancer and identified inhibition of MYC as a likewise beneficial and demanding effort. This review will focus on mechanisms that contribute to deregulation of MYC expression in pancreatic carcinogenesis and progression and will summarize novel biological findings from recent in vivo models. Finally, we provide a perspective, how regulation of MYC in PDAC may contribute to the development of new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Conacci-Sorrell M, McFerrin L, Eisenman RN . An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4: a014357.

    PubMed  PubMed Central  Google Scholar 

  2. McKeown MR, Bradner JE . Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 2014; 4: a014266.

    PubMed  PubMed Central  Google Scholar 

  3. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    CAS  PubMed  Google Scholar 

  4. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013; 45: 1134–1140.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C . Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013; 45: 1127–1133.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gabay M, Li Y, Felsher DW . MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med 2014; 4: a014241.

    PubMed  PubMed Central  Google Scholar 

  7. Huang M, Weiss WA . Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 2013; 3: a014415.

    PubMed  PubMed Central  Google Scholar 

  8. Roussel MF, Robinson GW . Role of MYC in medulloblastoma. Cold Spring Harb Perspect Med 2013; 3: a014308.

    PubMed  PubMed Central  Google Scholar 

  9. Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM . Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med 2014; 4: a014282.

    PubMed  PubMed Central  Google Scholar 

  10. Dang CV, Le A, Gao P . MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15: 6479–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bachireddy P, Rakhra K, Felsher DW . Immunology in the clinic review series; focus on cancer: multiple roles for the immune system in oncogene addiction. Clin Exp Immunol 2012; 167: 188–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gamberi G, Benassi MS, Böhling T, Ragazzini P, Molendini L, Sollazzo MR et al. Prognostic relevance of C-myc gene expression in giant-cell tumor of bone. J Orthop Res 1998; 16: 1–7.

    CAS  PubMed  Google Scholar 

  13. Nesbit CE, Tersak JM, Prochownik EV . MYC oncogenes and human neoplastic disease. Oncogene 1999; 18: 3004–3016.

    CAS  PubMed  Google Scholar 

  14. Skoudy A, Hernández-Muñoz I, Navarro P . Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer 2011; 42: 76–84.

    CAS  PubMed  Google Scholar 

  15. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM . Projecting Cancer Incidence and Deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74: 2913–2921.

    CAS  PubMed  Google Scholar 

  16. Soucek L, Whitfield JR, Sodir NM, Massó-Vallés D, Serrano E, Karnezis AN et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 2013; 27: 504–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455: 679–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wells JM, Esni F, Boivin GP, Aronow BJ, Stuart W, Combs C et al. Wnt/beta-catenin signaling is required for development of the exocrine pancreas. BMC Dev. Biol. 2007; 7: 4.

    PubMed  PubMed Central  Google Scholar 

  19. Stellas D, Szabolcs M, Koul S, Li Z, Polyzos A, Anagnostopoulos C et al. Therapeutic effects of an anti-Myc drug on mouse pancreatic cancer. J Natl Cancer Inst 2014; 106: dju320.

  20. Biankin AV, Waddell N, Kassahn KS, Gingras M, Muthuswamy LB, Johns AL et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491: 399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Waddell N, Pajic M, Patch A, Chang DK, Kassahn KS, Bailey P et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518: 495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. di Magliano MP, Logsdon CD . Roles for KRAS in pancreatic tumor development and progression. Gastroenterology 2013; 144: 1220–1229.

    CAS  PubMed  Google Scholar 

  23. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.

    CAS  PubMed  Google Scholar 

  26. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7: 469–483.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA . A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 2007; 13: 103–114.

    CAS  PubMed  Google Scholar 

  28. Bonal C, Thorel F, Ait-Lounis A, Reith W, Trumpp A, Herrera PL . Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 2008; 136: 309–319.

    PubMed  Google Scholar 

  29. Dessimoz J, Bonnard C, Huelsken J, Grapin-Botton A . Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol 2005; 15: 1677–1683.

    CAS  PubMed  Google Scholar 

  30. Nakhai H, Siveke JT, Mendoza-Torres L, Schmid RM . Conditional inactivation of Myc impairs development of the exocrine pancreas. Development 2008; 135: 3191–3196.

    CAS  PubMed  Google Scholar 

  31. Heiser PW, Lau J, Taketo MM, Herrera PL, Hebrok M . Stabilization of beta-catenin impacts pancreas growth. Development 2006; 133: 2023–2032.

    CAS  PubMed  Google Scholar 

  32. Murtaugh LC, Law AC, Dor Y, Melton DA . Beta-catenin is essential for pancreatic acinar but not islet development. Development 2005; 132: 4663–4674.

    CAS  PubMed  Google Scholar 

  33. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ et al. Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 2000; 97: 2229–2234.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Aichler M, Seiler C, Tost M, Siveke J, Mazur PK, Da Silva-Buttkus P et al. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol 2012; 226: 723–734.

    CAS  PubMed  Google Scholar 

  35. Rooman I, Real FX . Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut 2011; 61: 449–458.

    PubMed  Google Scholar 

  36. Sandgren EP, Quaife CJ, Paulovich AG, Palmiter RD, Brinster RL . Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 1991; 88: 93–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grippo PJ, Sandgren EP . Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents. Int J Cancer 2012; 131: 1243–1248.

    CAS  PubMed  Google Scholar 

  38. Lin W, Rajbhandari N, Liu C, Sakamoto K, Zhang Q, Triplett AA et al. Dormant cancer cells contribute to residual disease in a model of reversible pancreatic cancer. Cancer Res 2013; 73: 1821–1830.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sancho R, Gruber R, Gu G, Behrens A . Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells. Cell Stem Cell 2014; 15: 139–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Boj SF, Hwang C, Baker LA, Chio IIC, Engle DD, Corbo V et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2014; 160: 324–338.

    PubMed  PubMed Central  Google Scholar 

  41. Puri S, Folias AE, Hebrok M . Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell 2014; 16: 18–31.

    PubMed  PubMed Central  Google Scholar 

  42. Mazur PK, Einwächter H, Lee M, Sipos B, Nakhai H, Rad R et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 2010; 107: 13438–13443.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ischenko I, Petrenko O, Hayman MJ . Analysis of the tumor-initiating and metastatic capacity of PDX1-positive cells from the adult pancreas. Proc Natl Acad Sci USA 2014; 111: 3466–3471.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. de Alboran IM, O'Hagan RC, Gärtner F, Malynn B, Davidson L, Rickert R et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 2001; 14: 45–55.

    CAS  PubMed  Google Scholar 

  45. Politi K, Kljuic A, Szabolcs M, Fisher P, Ludwig T, Efstratiadis A . ‘Designer’ tumors in mice. Oncogene 2003; 23: 1558–1565.

    Google Scholar 

  46. Saborowski M, Saborowski A, Morris JP, Bosbach B, Dow LE, Pelletier J et al. A modular and flexible ESC-based mouse model of pancreatic cancer. Genes Dev 2014; 28: 85–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schönhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 2014; 20: 1340–1347.

    PubMed  PubMed Central  Google Scholar 

  48. Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Oli V et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 2006; 8: 764–770.

    CAS  PubMed  Google Scholar 

  49. Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S . Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 1998; 17: 2463–2472.

    CAS  PubMed  Google Scholar 

  50. Soucek L, Jucker R, Panacchia L, Ricordy R, Tatò F, Nasi S . Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Res 2002; 62: 3507–3510.

    CAS  PubMed  Google Scholar 

  51. Soucek L, Nasi S, Evan GI . Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ 2004; 11: 1038–1045.

    CAS  PubMed  Google Scholar 

  52. Eilers M, Eisenman RN . Myc's broad reach. Genes Dev 2008; 22: 2755–2766.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sabò A, Amati B . Genome recognition by MYC. Cold Spring Harb Perspect Med 2014; 4.

    PubMed  PubMed Central  Google Scholar 

  54. Elkon R, Zeller KI, Linhart C, Dang CV, Shamir R, Shiloh Y . In silico identification of transcriptional regulators associated with c-Myc. Nucleic Acids Res 2004; 32: 4955–4961.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wirth M, Stojanovic N, Christian J, Paul MC, Stauber RH, Schmid RM et al. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res 2014; 42: 10433–10447.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McMahon SB, Wood MA, Cole MD . The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 1999; 20: 556–562.

    Google Scholar 

  57. Ullius A, Lüscher-Firzlaff J, Costa IG, Walsemann G, Forst AH, Gusmao EG et al. The interaction of MYC with the trithorax protein ASH2L promotes gene transcription by regulating H3K27 modification. Nucleic Acids Res 2014; 42: 6901–6920.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD . The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 1998; 94: 363–374.

    CAS  PubMed  Google Scholar 

  59. Wang B, Li J, Ye Z, Li Z, Wu X . N-myc downstream regulated gene 1 acts as a tumor suppressor in ovarian cancer. Oncol Rep 2014; 31: 2279–2285.

    CAS  PubMed  Google Scholar 

  60. Zhang J, Koenig A, Harrison A, Ugolkov AV, Fernandez-Zapico ME, Couch FJ et al. Mutant K-Ras increases GSK-3β gene expression via an ETS-p300 transcriptional complex in pancreatic cancer. Oncogene 2011; 30: 3705–3715.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schneider G, Krämer OH, Schmid RM, Saur D . Acetylation as a transcriptional control mechanism-HDACs and HATs in pancreatic ductal adenocarcinoma. J Gastrointest Cancer 2011; 42: 85–92.

    CAS  PubMed  Google Scholar 

  62. Zheng Y, Balasubramanyam K, Cebrat M, Buck D, Guidez F, Zelent A et al. Synthesis and evaluation of a potent and selective cell-permeable p300 histone acetyltransferase inhibitor. J Am Chem Soc 2005; 127: 17182–17183.

    CAS  PubMed  Google Scholar 

  63. Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 2010; 17: 471–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB et al. c-Myc regulates transcriptional pause release. Cell 2010; 141: 432–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert J, Barsyte-Lovejoy D et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149: 214–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bisgrove DA, Mahmoudi T, Henklein P, Verdin E . Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc Natl Acad Sci USA 2007; 104: 13690–13695.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067–1073.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimamura T, Chen Z, Soucheray M, Carretero J, Kikuchi E, Tchaicha JH et al. Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer. Clin Cancer Res 2013; 19: 6183–6192.

    CAS  PubMed  Google Scholar 

  71. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 2012; 120: 2843–2852.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MGM, Qi J et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 2013; 24: 777–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989; 56: 673–682.

    CAS  PubMed  Google Scholar 

  74. Breuer M, Slebos R, Verbeek S, van Lohuizen M, Wientjens E, Berns A . Very high frequency of lymphoma induction by a chemical carcinogen in pim-1 transgenic mice. Nature 1989; 340: 61–63.

    CAS  PubMed  Google Scholar 

  75. Zippo A, De Robertis A, Serafini R, Oliviero S . PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 2007; 9: 932–944.

    CAS  PubMed  Google Scholar 

  76. Xu D, Cobb MG, Gavilano L, Witherspoon SM, Williams D, White CD et al. Inhibition of oncogenic Pim-3 kinase modulates transformed growth and chemosensitizes pancreatic cancer cells to gemcitabine. Cancer Biol Ther 2013; 14: 492–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wiese KE, Walz S, Eyss von B, Wolf E, Athineos D, Sansom O et al. The role of MIZ-1 in MYC-dependent tumorigenesis. Cold Spring Harb Perspect Med 2013; 3: a014290.

    PubMed  PubMed Central  Google Scholar 

  78. Walz S, Lorenzin F, Morton J, Wiese KE, Eyss von B, Herold S et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 2014; 511: 483–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. van Riggelen J, Müller J, Otto T, Beuger V, Yetil A, Choi PS et al. The interaction between Myc and Miz1 is required to antagonize TGFbeta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 2010; 24: 1281–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schleger C, Verbeke C, Hildenbrand R, Zentgraf H, Bleyl U . c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 2002; 15: 462–469.

    CAS  PubMed  Google Scholar 

  81. Bardeesy N, Aguirre AJ, Chu GC, Cheng K, Lopez LV, Hezel AF et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 2006; 103: 5947–5952.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Birnbaum DJ, Adélaïde J, Mamessier E, Finetti P, Lagarde A, Monges G et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 2011; 50: 456–465.

    CAS  PubMed  Google Scholar 

  83. La Rosa FA, Pierce JW, Sonenshein GE . Differential regulation of the c-myc oncogene promoter by the NF-kappa B rel family of transcription factors. Mol Cell Biol 1994; 14: 1039–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee H, Wu M, La Rosa FA, Duyao MP, Buckler AJ, Sonenshein GE . Role of the Rel-family of transcription factors in the regulation of c-myc gene transcription and apoptosis of WEHI 231 murine B-cells. Curr Top Microbiol Immunol 1995; 194: 247–255.

    CAS  PubMed  Google Scholar 

  85. Yochum GS . Multiple Wnt/ß-catenin responsive enhancers align with the MYC promoter through long-range chromatin loops. PLoS ONE 2011; 6: e18966.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bierie B, Moses HL . TGF-beta and cancer. Cytokine Growth Factor Rev 2005; 17: 29–40.

    PubMed  Google Scholar 

  87. Shi Y, Massagué J . Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700.

    CAS  PubMed  Google Scholar 

  88. Schneider G, Schmid RM . Genetic alterations in pancreatic carcinoma. Mol Cancer 2003; 2: 15.

    PubMed  PubMed Central  Google Scholar 

  89. Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G et al. LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther 2008; 7: 829–840.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J 2006; 25: 3714–3724.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR . Identification of a putative regulator of early T cell activation genes. Science 1988; 241: 202–205.

    CAS  PubMed  Google Scholar 

  92. Singh G, Singh SK, König A, Reutlinger K, Nye MD, Adhikary T et al. Sequential activation of NFAT and c-Myc transcription factors mediates the TGF-beta switch from a suppressor to a promoter of cancer cell proliferation. J Biol Chem 2010; 285: 27241–27250.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Köenig A, Linhart T, Schlengemann K, Reutlinger K, Wegele J, Adler G et al. NFAT-induced histone acetylation relay switch promotes c-Myc-dependent growth in pancreatic cancer cells. Gastroenterology 2009; 138: 1189–1199.

    PubMed  Google Scholar 

  94. Zadran S, Remacle F, Levine RD . miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients. Proc Natl Acad Sci USA 2013; 110: 19160–19165.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Palanichamy JK, Rao DS . miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet 2014; 5: 54.

    PubMed  PubMed Central  Google Scholar 

  96. Jackstadt R, Hermeking H . MicroRNAs as regulators and mediators of c-MYC function. Biochim Biophys Acta 2014; 1849: 544–553.

    PubMed  Google Scholar 

  97. He W, Li Y, Chen X, Lu L, Bin Tang, Wang Z et al. miR-494 acts as an anti-oncogene in gastric carcinoma by targeting c-myc. J Gastroenterol Hepatol 2014; 29: 1427–1434.

    CAS  PubMed  Google Scholar 

  98. Cannell IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC et al. p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci USA 2010; 107: 5375–5380.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheng C, Hwang C, Corney DC, Flesken-Nikitin A, Jiang L, Oner GM et al. miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 2014; 6: 1000–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Choi YJ, Lin C, Ho JJ, He X, Okada N, Bu P et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol. 2011; 13: 1353–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Okada N, Lin C, Ribeiro MC, Biton A, Lai G, He X et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28: 438–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Menssen A, Hermeking H . c-MYC and SIRT1 locked in a vicious cycle. Oncotarget 2012; 3: 112–113.

    PubMed  PubMed Central  Google Scholar 

  103. Tazawa H, Kagawa S, Fujiwara T . MicroRNAs as potential target gene in cancer gene therapy of gastrointestinal tumors. Expert Opin Biol Ther 2011; 11: 145–155.

    CAS  PubMed  Google Scholar 

  104. Yamakuchi M, Ferlito M, Lowenstein CJ . miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008; 105: 13421–13426.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kent OA, Mendell JT . A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006; 25: 6188–6196.

    CAS  PubMed  Google Scholar 

  106. Groisman I, Ivshina M, Marin V, Kennedy NJ, Davis RJ, Richter JD . Control of cellular senescence by CPEB. Genes Dev 2006; 20: 2701–2712.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ogami K, Hosoda N, Funakoshi Y, Hoshino S . Antiproliferative protein Tob directly regulates c-myc proto-oncogene expression through cytoplasmic polyadenylation element-binding protein CPEB. Oncogene 2012; 33: 55–64.

    PubMed  Google Scholar 

  108. Ortiz-Zapater E, Pineda D, Martínez-Bosch N, Fernández-Miranda G, Iglesias M, Alameda F et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med 2011; 18: 83–90.

    PubMed  Google Scholar 

  109. Vervoorts J, Lüscher-Firzlaff J, Lüscher B . The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem 2006; 281: 34725–34729.

    CAS  PubMed  Google Scholar 

  110. Cattoretti G . MYC expression and distribution in normal mature lymphoid cells. J Pathol 2012; 229: 430–440.

    Google Scholar 

  111. Welcker M, Clurman BE . FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2007; 8: 83–93.

    Google Scholar 

  112. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP . Skp2 regulates Myc protein stability and activity. Mol Cell 2003; 11: 1177–1188.

    CAS  PubMed  Google Scholar 

  114. Gao Y, Lin F, Xu P, Nie J, Chen Z, Su J et al. USP22 is a positive regulator of NFATc2 on promoting IL2 expression. FEBS Lett 2014; 588: 878–883.

    CAS  PubMed  Google Scholar 

  115. Peter S, Bultinck J, Myant K, Jaenicke LA, Walz S, Müller J et al. Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase. EMBO Mol Med 2014; 6: 1525–1541.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L et al. Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell 2013; 24: 75–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E et al. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 2014; 26: 414–427.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang S, He S, Zhou X, Liu M, Zhu H, Wang Y et al. Suppression of Aurora-A oncogenic potential by c-Myc downregulation. Exp Mol Med 2010; 42: 759–767.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hodges LC, Cook JD, Lobenhofer EK, Li L, Bennett L, Bushel PR et al. Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in breast cancer cells. Mol Cancer Res 2003; 1: 300–311.

    CAS  PubMed  Google Scholar 

  120. Neben K, Korshunov A, Benner A, Wrobel G, Hahn M, Kokocinski F et al. Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 2004; 64: 3103–3111.

    CAS  PubMed  Google Scholar 

  121. Fukushima N, Sato N, Prasad N, Leach SD, Hruban RH, Goggins M . Characterization of gene expression in mucinous cystic neoplasms of the pancreas using oligonucleotide microarrays. Oncogene 2004; 23: 9042–9051.

    CAS  PubMed  Google Scholar 

  122. Rojanala S, Han H, Muñoz RM, Browne W, Nagle R, Hoff Von DD et al. The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther 2004; 3: 451–457.

    CAS  PubMed  Google Scholar 

  123. Yang D, Liu H, Goga A, Kim S, Yuneva M, Bishop JM . Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci USA 2010; 107: 13836–13841.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Cermelli S, Jang IS, Bernard B, Grandori C . Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med 2014; 4:: pii: a014209.

    Google Scholar 

  125. Liu L, Ulbrich J, Müller J, Wüstefeld T, Aeberhard L, Kress TR et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 2012; 483: 608–612.

    CAS  PubMed  Google Scholar 

  126. Lüscher B, Kuenzel EA, Krebs EG, Eisenman RN . Myc oncoproteins are phosphorylated by casein kinase II. EMBO J 1989; 8: 1111–1119.

    PubMed  PubMed Central  Google Scholar 

  127. Gregory MA, Hann SR . c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 2000; 20: 2423–2435.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M et al. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell 2006; 21: 509–519.

    CAS  PubMed  Google Scholar 

  129. Henriksson M, Bakardjiev A, Klein G, Lüscher B . Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 1993; 8: 3199–3209.

    CAS  PubMed  Google Scholar 

  130. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Feldmann G, Mishra A, Bisht S, Karikari C, Garrido-Laguna I, Rasheed Z et al. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol Ther 2011; 12: 598–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cowling VH, Cole MD . Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol 2006; 16: 242–252.

    CAS  PubMed  Google Scholar 

  133. Chang DK, Grimmond SM, Biankin AV . Pancreatic cancer genomics. Curr Opin Genet Dev 2014; 24: 74–81.

    CAS  PubMed  Google Scholar 

  134. Gurda GT, Crozier SJ, Ji B, Ernst SA, Logsdon CD, Rothermel BA et al. Regulator of calcineurin 1 controls growth plasticity of adult pancreas. Gastroenterology 2010; 139: 609–619.

    CAS  PubMed  Google Scholar 

  135. Singh SK, Baumgart S, Singh G, König AO, Reutlinger K, Hofbauer LC et al. Disruption of a nuclear NFATc2 protein stabilization loop confers breast and pancreatic cancer growth suppression by zoledronic acid. J Biol Chem 2011; 286: 28761–28771.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Epelbaum R, Schaffer M, Vizel B, Badmaev V, Bar-Sela G . Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer 2010; 62: 1137–1141.

    CAS  PubMed  Google Scholar 

  137. Hamacher R, Saur D, Fritsch R, Reichert M, Schmid RM, Schneider G . Casein kinase II inhibition induces apoptosis in pancreatic cancer cells. Oncol Rep 2007; 18: 695–701.

    CAS  PubMed  Google Scholar 

  138. Nam S, Wen W, Schroeder A, Herrmann A, Yu H, Cheng X et al. Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Mol Oncol 2012; 7: 369–378.

    PubMed  PubMed Central  Google Scholar 

  139. Sahai V, Kumar K, Knab LM, Chow CR, Raza SS, Bentrem DJ et al. BET bromodomain inhibitors block growth of pancreatic cancer cells in three-dimensional collagen. Mol Cancer Ther 2014; 13: 1907–1917.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all the investigators whose research could not be included in this review owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J T Siveke.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hessmann, E., Schneider, G., Ellenrieder, V. et al. MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene 35, 1609–1618 (2016). https://doi.org/10.1038/onc.2015.216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.216

This article is cited by

Search

Quick links