Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRIM25 has a dual function in the p53/Mdm2 circuit

Abstract

P53 is an important tumor suppressor that, upon activation, induces growth arrest and cell death. Control of p53 is thus of prime importance for proliferating cells, but also for cancer therapy, where p53 activity contributes to the eradication of tumors. Mdm2 functionally inhibits p53 and targets the tumor suppressor protein for degradation. In a genetic screen, we identified TRIM25 as a novel regulator of p53 and Mdm2. TRIM25 increased p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26 S proteasomes. TRIM25 co-precipitated with p53 and Mdm2 and interfered with the association of p300 and Mdm2, a critical step for p53 polyubiquitination. Despite the increase in p53 levels, p53 activity was inhibited in the presence of TRIM25. Downregulation of TRIM25 resulted in an increased acetylation of p53 and p53-dependent cell death in HCT116 cells. Upon genotoxic insults, TRIM25 dampened the p53-dependent DNA damage response. The downregulation of TRIM25 furthermore resulted in massive apoptosis during early embryogenesis of medaka, which was rescued by the concomitant downregulation of p53, demonstrating the functional relevance of the regulation of p53 by TRIM25 in an organismal context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Riley T, Sontag E, Chen P, Levine A . Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 9: 402–412.

    Article  CAS  Google Scholar 

  2. Boehme KA, Blattner C . Regulation of p53—insights into a complex process. Crit Rev Biochem Mol Biol 2009; 44: 367–392.

    Article  CAS  Google Scholar 

  3. Nisole S, Stoye JP, Saib A . TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005; 3: 799–808.

    Article  CAS  Google Scholar 

  4. Inoue S, Orimo A, Hosoi T, Kondo S, Toyoshima H, Kondo T et al. Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc Natl Acad Sci USA 1993; 90: 11117–11121.

    Article  CAS  Google Scholar 

  5. Shimada N, Suzuki T, Inoue S, Kato K, Imatani A, Sekine H et al. Systemic distribution of estrogen-responsive finger protein (Efp) in human tissues. Mol Cell Endocrinol 2004; 218: 147–153.

    Article  CAS  Google Scholar 

  6. Orimo A, Inoue S, Minowa O, Tominaga N, Tomioka Y, Sato M et al. Underdeveloped uterus and reduced estrogen responsiveness in mice with disruption of the estrogen-responsive finger protein gene, which is a direct target of estrogen receptor alpha. Proc Natl Acad Sci USA 1999; 96: 12027–12032.

    Article  CAS  Google Scholar 

  7. Urano T, Saito T, Tsukui T, Fujita M, Hosoi T, Muramatsu M, Ouchi Y et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 2002; 417: 871–875.

    Article  CAS  Google Scholar 

  8. Zou W, Zhang DE . The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem 2006; 281: 3989–3994.

    Article  CAS  Google Scholar 

  9. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 1998; 2: 405–415.

    Article  CAS  Google Scholar 

  10. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z . USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 2010; 140: 384–396.

    Article  CAS  Google Scholar 

  11. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W . Acetylation is indispensable for p53 activation. Cell 2008; 133: 612–626.

    Article  CAS  Google Scholar 

  12. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 1998; 12: 2831–2841.

    Article  CAS  Google Scholar 

  13. Kobet E, Zeng X, Zhu Y, Keller D, Lu H . MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci USA 2000; 97: 12547–12552.

    Article  CAS  Google Scholar 

  14. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 2004; 279: 51163–51171.

    Article  CAS  Google Scholar 

  15. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S . Hopkins. Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 2004; 101: 12792–12797.

    Article  CAS  Google Scholar 

  16. Bartel F, Jung J, Böhnke A, Gradhand E, Zeug K, Thomssen C, Hauptmann S . Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival. Clin Cancer Res 2008; 14: 89–96.

    Article  CAS  Google Scholar 

  17. Watanabe T, Imoto I, Kosugi Y, Ishiwata I, Inoue S, Takayama M et al. A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization. Gynecol Oncol 2001; 81: 172–177.

    Article  CAS  Google Scholar 

  18. Souren M, Martinez-Morales JR, Makri P, Wittbrodt B, Wittbrodt J . A global survey identifies novel upstream components of the Ath5 neurogenic network. Genome Biol 2009; 10: R92.

    Article  Google Scholar 

  19. Okumura N, Saji S, Eguchi H, Hayashi S, Nakashima S . Estradiol stabilizes p53 protein in breast cancer cell line, MCF-7. Jpn J Cancer Res 2002; 93: 867–873.

    Article  CAS  Google Scholar 

  20. Kinyamu HK, Archer TK . Estrogen receptor-dependent proteasomal degradation of the glucocorticoid receptor is coupled to an increase in mdm2 protein expression. Mol Cell Biol 2003; 23: 5867–5881.

    Article  CAS  Google Scholar 

  21. Hurd C, Dinda S, Khattree N, Moudgil VK . Estrogen-dependent and independent activation of the P1 promoter of the p53 gene in transiently transfected breast cancer cells. Oncogene 1999; 18: 1067–1072.

    Article  CAS  Google Scholar 

  22. Brooks CL, Gu W . The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2011; 2: 456–462.

    Article  CAS  Google Scholar 

  23. Nakayama H, Sano T, Motegi A, Oyama T, Nakajima T . Increasing 14-3-3 sigma expression with declining estrogen receptor alpha and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol Int 2005; 55: 707–715.

    Article  CAS  Google Scholar 

  24. Lane DP . Cancer. p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  CAS  Google Scholar 

  25. Ikeda K, Orimo A, Higashi Y, Muramatsu M, Inoue S . Efp as a primary estrogen-responsive gene in human breast cancer. FEBS Lett 2000; 472: 9–13.

    Article  CAS  Google Scholar 

  26. Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C . Mdm2 facilitates the association of p53 with the proteasome. Proc Natl Acad Sci USA 2010; 107: 10038–10043.

    Article  CAS  Google Scholar 

  27. Solozobova V, Blattner C . Regulation of p53 in embryonic stem cells. Exp Cell Research 2010; 316: 2434–2446.

    Article  CAS  Google Scholar 

  28. Loosli F, Koster RW, Carl M, Krone A, Wittbrodt J . Six3 a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev 1998; 74: 159–164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Germana Meroni (CBM S.c.r.l., Trieste) for the TRIM25 plasmid, Yi Su for help with the screening and Christina Bauer, Tanja Kuhn, Beate Heydel and Cathrin Herder for technical assistance. PZ was a CSC fellow. GD acknowledges the funding from the DFG (FOR 1036) for the screening experiments. This work is supported by COST Action BM1307.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Davidson or C Blattner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Elabd, S., Hammer, S. et al. TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene 34, 5729–5738 (2015). https://doi.org/10.1038/onc.2015.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.21

This article is cited by

Search

Quick links