Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Short Communications

Pluripotency factor Nanog is tumorigenic by deregulating DNA damage response in somatic cells

Subjects

Abstract

The pluripotency gene Nanog is not expressed in normal adult tissues but is overexpressed in some human cancers. However, the tumorigenic roles of Nanog remain unclear. The ectopic expression of Nanog is not sufficient to induce spontaneous tumors in mice but can promote metastasis of established tumors by activating the expression of metastatic genes. The expression of Nanog in mouse skin activates tumor suppressor p53, leading to the differentiation of epidermal stem cells. In the absence of p53, Nanog induces spontaneous squamous cell carcinoma, identifying a novel role of Nanog in tumorigenesis. Therefore, the induction of p53 and differentiation in Nanog-expressing skin suppresses the tumorigenic activities of Nanog, which include the induction of DNA double-stranded break damage. Notably, Nanog interacts with the KRAB-associated protein 1 (KAP1) and inhibits its sumoylation activity, impairing KAP1-mediated chromatin remodeling, which is important for efficiently activating DNA damage response. In summary, Nanog is an oncogene with multiple roles in promoting tumorigenesis and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  2. Thomson JA, Marshall VS . Primate embryonic stem cells. Curr Top Dev Biol 1998; 38: 133–165.

    Article  CAS  PubMed  Google Scholar 

  3. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643–655.

    Article  CAS  PubMed  Google Scholar 

  4. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631–642.

    Article  CAS  PubMed  Google Scholar 

  5. Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O et al. Nanog is the gateway to the pluripotent ground state. Cell 2009; 138: 722–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Theunissen TW, Silva JC . Switching on pluripotency: a perspective on the biological requirement of Nanog. Philos Trans R Soc Lond B Biol Sci 2011; 366: 2222–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013; 495: 370–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iv Santaliz-Ruiz LE, Xie X, Old M, Teknos TN, Pan Q . Emerging role of nanog in tumorigenesis and cancer stem cells. Int J Cancer 2014; 135: 2741–2748.

    Article  CAS  PubMed  Google Scholar 

  10. Han J, Zhang F, Yu M, Zhao P, Ji W, Zhang H et al. RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett 2012; 321: 80–88.

    Article  CAS  PubMed  Google Scholar 

  11. Lin YL, Han ZB, Xiong FY, Tian LY, Wu XJ, Xue SW et al. Malignant transformation of 293 cells induced by ectopic expression of human Nanog. Mol Cell Biochem 2011; 351: 109–116.

    Article  CAS  PubMed  Google Scholar 

  12. Lu X, Mazur SJ, Lin T, Appella E, Xu Y . The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 2014; 33: 2655–2664.

    Article  CAS  PubMed  Google Scholar 

  13. Siu MK, Wong ES, Kong DS, Chan HY, Jiang L, Wong OG et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene 2013; 32: 3500–3509.

    Article  CAS  PubMed  Google Scholar 

  14. Fischedick G, Wu G, Adachi K, Arauzo-Bravo MJ, Greber B, Radstaak M et al. Nanog induces hyperplasia without initiating tumors. Stem Cell Res 2014; 13: 300–315.

    Article  CAS  PubMed  Google Scholar 

  15. Ho B, Olson G, Figel S, Gelman I, Cance WG, Golubovskaya VM . Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated. J Biol Chem 2012; 287: 18656–18673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noh KH, Kim BW, Song KH, Cho H, Lee YH, Kim JH et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest 2012; 122: 4077–4093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piestun D, Kochupurakkal BS, Jacob-Hirsch J, Zeligson S, Koudritsky M, Domany E et al. Nanog transforms NIH3T3 cells and targets cell-type restricted genes. Biochem Biophys Res Commun 2006; 343: 279–285.

    Article  CAS  PubMed  Google Scholar 

  18. Sun C, Sun L, Jiang K, Gao DM, Kang XN, Wang C et al. NANOG promotes liver cancer cell invasion by inducing epithelial-mesenchymal transition through NODAL/SMAD3 signaling pathway. Int J Biochem Cell Biol 2013; 45: 1099–1108.

    Article  CAS  PubMed  Google Scholar 

  19. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 2001; 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  20. Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 2007; 128: 853–864.

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Nakasaki M, Todorova D, Lake B, Yuan CY, Jamora C et al. p53 induces skin aging by depleting Blimp1+ sebaceous gland cells. Cell Death Dis 2014; 5: e1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu D, Ou L, Clemenson GD Jr., Chao C, Lutske ME, Zambetti GP et al. Puma is required for p53-induced depletion of adult stem cells. Nat Cell Biol 2010; 12: 993–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piazzolla D, Palla AR, Pantoja C, Canamero M, de Castro IP, Ortega S et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun 2013; 5: 4226.

    Article  Google Scholar 

  24. Chiu SJ, Lee YJ, Hsu TS, Chen WS . Oxaliplatin-induced gamma-H2AX activation via both p53-dependent and -independent pathways but is not associated with cell cycle arrest in human colorectal cancer cells. Chem Biol Interact 2009; 182: 173–182.

    Article  CAS  PubMed  Google Scholar 

  25. Moretto-Zita M, Jin H, Shen Z, Zhao T, Briggs SP, Xu Y . Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci USA 2010; 107: 13312–13317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bakkenist CJ, Kastan MB . DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  27. Kim YC, Gerlitz G, Furusawa T, Catez F, Nussenzweig A, Oh KS et al. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol 2009; 11: 92–96.

    Article  CAS  PubMed  Google Scholar 

  28. Goodarzi AA, Kurka T, Jeggo PA . KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat Struct Mol Biol 2011; 18: 831–839.

    Article  CAS  PubMed  Google Scholar 

  29. Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 2007; 28: 823–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Falk M, Lukasova E, Kozubek S . Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim Biophys Acta 2008; 1783: 2398–2414.

    Article  CAS  PubMed  Google Scholar 

  31. Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K et al. Chromatin compaction protects genomic DNA from radiation damage. PLoS One 2013; 8 e75622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Negrini S, Gorgoulis VG, Halazonetis TD . Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11: 220–228.

    Article  CAS  PubMed  Google Scholar 

  33. Badeaux MA, Jeter CR, Gong S, Liu B, Suraneni MV, Rundhaug J et al. In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals. Cell Cycle 2013; 12: 2395–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gandarillas A . The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle 2012; 11: 4507–4516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuramoto N, Takizawa T, Matsuki M, Morioka H, Robinson JM, Yamanishi K . Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1. J Clin Invest 2002; 109: 243–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao T, Zhang ZN, Rong Z, Xu Y . Immunogenicity of induced pluripotent stem cells. Nature 2011; 474: 212–215.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Manando Nakasaki for help with skin analysis, Dr Colin Jamora for providing K14-cre transgenic mice, and the UCSD Cancer Center Histology Core for help with the histological analysis. This work was supported by grants from Chinese Ministry of Science and Technology (2012CB966900 and 2013ZX10002008002) and CIRM (RC1-00148).

Author Contributions

JK and YX designed the experiments and analyzed the data. JK, YL and MQ executed the experiments. JK and YX were responsible for the initial draft of the manuscript and other authors contributed to the final edited versions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Liu, Y., Qiu, M. et al. Pluripotency factor Nanog is tumorigenic by deregulating DNA damage response in somatic cells. Oncogene 35, 1334–1340 (2016). https://doi.org/10.1038/onc.2015.205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.205

This article is cited by

Search

Quick links