Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stromal fibroblasts facilitate cancer cell invasion by a novel invadopodia-independent matrix degradation process

Subjects

Abstract

Metastatic invasion of tumors into peripheral tissues is known to rely upon protease-mediated degradation of the surrounding stroma. This remodeling process uses complex, actin-based, specializations of the plasma membrane termed invadopodia that act both to sequester and release matrix metalloproteinases. Here we report that cells of mesenchymal origin, including tumor-associated fibroblasts, degrade substantial amounts of surrounding matrix by a mechanism independent of conventional invadopodia. These degradative sites lack the punctate shape of conventional invadopodia to spread along the cell base and are reticular and/or fibrous in character. In marked contrast to invadopodia, this degradation does not require the action of Src kinase, Cdc42 or Dyn2. Rather, inhibition of Dyn2 causes a marked upregulation of stromal matrix degradation. Further, expression and activity of matrix metalloproteinases are differentially regulated between tumor cells and stromal fibroblasts. This matrix remodeling by fibroblasts increases the invasive capacity of tumor cells, thereby illustrating how the tumor microenvironment can contribute to metastasis. These findings provide evidence for a novel matrix remodeling process conducted by stromal fibroblasts that is substantially more effective than conventional invadopodia, distinct in structural organization and regulated by disparate molecular mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Murphy DA, Courtneidge SA . The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011; 12: 413–426.

    Article  CAS  Google Scholar 

  2. Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA et al. Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 2003; 14: 1074–1084.

    Article  CAS  Google Scholar 

  3. Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 2005; 168: 441–452.

    Article  CAS  Google Scholar 

  4. Chen WT, Chen JM, Parsons SJ, Parsons JT . Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature 1985; 316: 156–158.

    Article  CAS  Google Scholar 

  5. Buccione R, Orth JD, McNiven MA . Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 2004; 5: 647–657.

    Article  CAS  Google Scholar 

  6. Waghray M, Yalamanchili M, di Magliano MP, Simeone DM . Deciphering the role of stroma in pancreatic cancer. Curr Opin Gastroenterol 2013; 29: 537–543.

    Article  Google Scholar 

  7. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9: 1392–1400.

    Article  CAS  Google Scholar 

  8. Brentnall TA, Lai LA, Coleman J, Bronner MP, Pan S, Chen R . Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion. PLoS One 2012; 7: e30219.

    Article  CAS  Google Scholar 

  9. Goicoechea SM, Garcia-Mata R, Staub J, Valdivia A, Sharek L, McCulloch CG et al. Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene 2014; 33: 1265–1273.

    Article  CAS  Google Scholar 

  10. Destaing O, Ferguson SM, Grichine A, Oddou C, De Camilli P, Albiges-Rizo C et al. Essential function of dynamin in the invasive properties and actin architecture of v-Src induced podosomes/invadosomes. PLoS One 2013; 8: e77956.

    Article  Google Scholar 

  11. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC . Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 2006; 66: 3034–3043.

    Article  CAS  Google Scholar 

  12. Ohlund D, Elyada E, Tuveson D . Fibroblast heterogeneity in the cancer wound. J Exp Med 2014; 211: 1503–1523.

    Article  CAS  Google Scholar 

  13. Wang Y, McNiven MA . Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex. J Cell Biol 2012; 196: 375–385.

    Article  CAS  Google Scholar 

  14. Yu X, Zech T, McDonald L, Gonzalez EG, Li A, Macpherson I et al. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol 2012; 199: 527–544.

    Article  CAS  Google Scholar 

  15. Ferguson SM, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell 2009; 17: 811–822.

    Article  CAS  Google Scholar 

  16. Boateng LR, Huttenlocher A . Spatiotemporal regulation of Src and its substrates at invadosomes. Eur J Cell Biol 2012; 91: 878–888.

    Article  CAS  Google Scholar 

  17. Nakahara H, Otani T, Sasaki T, Miura Y, Takai Y, Kogo M . Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells 2003; 8: 1019–1027.

    Article  CAS  Google Scholar 

  18. Razidlo GL, Schroeder B, Chen J, Billadeau DD, McNiven MA . Vav1 as a central regulator of invadopodia assembly. Curr Biol 2014; 24: 86–93.

    Article  CAS  Google Scholar 

  19. Sato H, Takino T, Kinoshita T, Imai K, Okada Y, Stetler Stevenson WG et al. Cell surface binding and activation of gelatinase A induced by expression of membrane-type-1-matrix metalloproteinase (MT1-MMP). FEBS Lett 1996; 385: 238–240.

    Article  CAS  Google Scholar 

  20. Okada A, Tomasetto C, Lutz Y, Bellocq JP, Rio MC, Basset P . Expression of matrix metalloproteinases during rat skin wound healing: evidence that membrane type-1 matrix metalloproteinase is a stromal activator of pro-gelatinase A. J Cell Biol 1997; 137: 67–77.

    Article  CAS  Google Scholar 

  21. Jiang A, Lehti K, Wang X, Weiss SJ, Keski-Oja J, Pei D . Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis. Proc Natl Acad Sci USA 2001; 98: 13693–13698.

    Article  CAS  Google Scholar 

  22. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014; 25: 735–747.

    Article  CAS  Google Scholar 

  23. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014; 25: 719–734.

    Article  CAS  Google Scholar 

  24. Martinez-Outschoorn UE, Lisanti MP, Sotgia F . Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 2014; 25: 47–60.

    Article  CAS  Google Scholar 

  25. Egeblad M, Littlepage LE, Werb Z . The fibroblastic coconspirator in cancer progression. Cold Spring Harbor Symposia on Quantitative Biology 2005; 70: 383–388.

    Article  CAS  Google Scholar 

  26. Calon A, Tauriello DV, Batlle E . TGF-beta in CAF-mediated tumor growth and metastasis. Semin Cancer Biol 2014; 25: 15–22.

    Article  CAS  Google Scholar 

  27. Mishra P, Banerjee D, Ben-Baruch A . Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 2011; 89: 31–39.

    Article  CAS  Google Scholar 

  28. Luga V, Wrana JL . Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res 2013; 73: 6843–6847.

    Article  CAS  Google Scholar 

  29. De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M . Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol 2014; 25: 33–46.

    Article  CAS  Google Scholar 

  30. Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP . Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 2012; 10: 1403–1418.

    Article  CAS  Google Scholar 

  31. Cao H, Orth JD, Chen J, Weller SG, Heuser JE, McNiven MA . Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol Cell Biol 2003; 23: 2162–2170.

    Article  CAS  Google Scholar 

  32. Cao H, Garcia F, McNiven MA . Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 1998; 9: 2595–2609.

    Article  CAS  Google Scholar 

  33. Cao H, Thompson HM, Krueger EW, McNiven MA . Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J Cell Sci 2000; 113: 1993–2002.

    CAS  PubMed  Google Scholar 

  34. McNiven MA, Kim L, Krueger EW, Orth JD, Cao H, Wong TW . Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 2000; 151: 187–198.

    Article  CAS  Google Scholar 

  35. Eppinga RD, Krueger EW, Weller SG, Zhang L, Cao H, McNiven MA . Increased expression of the large GTPase dynamin 2 potentiates metastatic migration and invasion of pancreatic ductal carcinoma. Oncogene 2012; 31: 1228–1241.

    Article  CAS  Google Scholar 

  36. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P . MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 2007; 109: 4055–4063.

    Article  CAS  Google Scholar 

  37. Henley JR, Krueger EW, Oswald BJ, McNiven MA . Dynamin-mediated internalization of caveolae. J Cell Biol 1998; 141: 85–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by R01 CA104125 to MAM, P30DK084567 (Mayo Clinic Center for Cell Signaling in Gastroenterology), T32 DK007198 (to RDE), and P50 CA102701 (Mayo Clinic SPORE in Pancreatic Cancer, to GLR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A McNiven.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Eppinga, R., Razidlo, G. et al. Stromal fibroblasts facilitate cancer cell invasion by a novel invadopodia-independent matrix degradation process. Oncogene 35, 1099–1110 (2016). https://doi.org/10.1038/onc.2015.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.163

This article is cited by

Search

Quick links