Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability

Abstract

Mutations in Bloom helicase (BLM) lead to Bloom Syndrome (BS). BS is characterized by multiple clinical manifestations including predisposition to a wide spectrum of cancers. Studies have revealed the mechanism of BLM recruitment after stalled replication and its role during the repair of DNA damage. We now provide evidence that BLM undergoes K48-linked ubiquitylation and subsequent degradation during mitosis due to the E3 ligase, Fbw7α. Fbw7α carries out its function after GSK3β- and CDK2/cyclin A2-dependent phosphorylation events on Thr171 and Ser175 of BLM which lies within a well-defined phosphodegron, a sequence which is conserved in all primates. Phosphorylation on BLM Thr171 and Ser175 depends on prior phosphorylation at Thr182 by Chk1/Chk2. Thr182 phosphorylation not only controls BLM ubiquitylation and degradation during mitosis but is also a determinant for its localization on the ultrafine bridges. Consequently lack of Thr182 phosphorylation leads to multiple manifestations of chromosomal instability including increased levels of DNA damage, lagging chromatin, micronuclei formation, breaks and quadriradials. Hence Thr182 phosphorylation on BLM has two functions—it regulates BLM turnover during mitosis and also helps to maintain the chromosomal stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 1995; 83: 655–666.

    Article  CAS  PubMed  Google Scholar 

  2. German J . Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 1993; 72: 393–406.

    Article  CAS  Google Scholar 

  3. Bachrati CZ, Hickson ID . RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 2003; 374: 577–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chu WK, Hickson ID . RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 2009; 9: 644–654.

    Article  CAS  PubMed  Google Scholar 

  5. Tikoo S, Sengupta S . Time to bloom. Genome Integr 2010; 1: 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bohm S, Bernstein KA . The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair (Amst) 2014; 22C: 123–132.

    Article  Google Scholar 

  7. Ababou M, Dutertre S, Lecluse Y, Onclercq R, Chatton B, Amor-Gueret M . ATM-dependent phosphorylation and accumulation of endogenous BLM protein in response to ionizing radiation. Oncogene 2000; 19: 5955–5963.

    Article  CAS  PubMed  Google Scholar 

  8. Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C et al. Functional link between BLM defective in Bloom's syndrome and the ataxia-telangiectasia-mutated protein, ATM. J Biol Chem 2002; 277: 30515–30523.

    Article  CAS  PubMed  Google Scholar 

  9. Davies SL, North PS, Dart A, Lakin ND, Hickson ID . Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 2004; 24: 1279–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franchitto A, Pichierri P . Bloom's syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest. J Cell Biol 2002; 157: 19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davies SL, North PS, Hickson ID . Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol 2007; 14: 677–679.

    Article  CAS  PubMed  Google Scholar 

  12. Kaur S, Modi P, Srivastava V, Mudgal R, Tikoo S, Arora P et al. Chk1-dependent constitutive phosphorylation of BLM helicase at serine 646 decreases after DNA damage. Mol Cancer Res 2010; 8: 1234–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tikoo S, Madhavan V, Hussain M, Miller ES, Arora P, Zlatanou A et al. Ubiquitin-dependent recruitment of the Bloom Syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J 2013; 32: 1778–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan KL, North PS, Hickson ID . BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 2007; 26: 3397–3409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naim V, Rosselli F . The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 2009; 11: 761–768.

    Article  CAS  PubMed  Google Scholar 

  16. Ke Y, Huh JW, Warrington R, Li B, Wu N, Leng M et al. PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution. EMBO J 2011; 30: 3309–3321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rouzeau S, Cordelieres FP, Buhagiar-Labarchede G, Hurbain I, Onclercq-Delic R, Gemble S et al. Bloom's syndrome and PICH helicases cooperate with topoisomerase IIalpha in centromere disjunction before anaphase. PLoS One 2012; 7: e33905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan KL, Palmai-Pallag T, Ying S, Hickson ID . Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 2009; 11: 753–760.

    Article  CAS  PubMed  Google Scholar 

  19. Dutertre S, Ababou M, Onclercq R, Delic J, Chatton B, Jaulin C et al. Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene 2000; 19: 2731–2738.

    Article  CAS  PubMed  Google Scholar 

  20. Sanz MM, Proytcheva M, Ellis NA, Holloman WK, German J . BLM the Bloom's syndrome protein, varies during the cell cycle in its amount, distribution, and co-localization with other nuclear proteins. Cytogenet Cell Genet 2000; 91: 217–223.

    Article  CAS  PubMed  Google Scholar 

  21. Bayart E, Dutertre S, Jaulin C, Guo RB, Xi XG, Amor-Gueret M . The Bloom syndrome helicase is a substrate of the mitotic Cdc2 kinase. Cell Cycle 2006; 5: 1681–1686.

    Article  CAS  PubMed  Google Scholar 

  22. Leng M, Chan DW, Luo H, Zhu C, Qin J, Wang Y . MPS1-dependent mitotic BLM phosphorylation is important for chromosome stability. Proc Natl Acad Sci USA 2006; 103: 11485–11490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petsalaki E, Dandoulaki M, Morrice N, Zachos G . Chk1 protects against chromatin bridges by constitutively phosphorylating BLM serine 502 to inhibit BLM degradation. J Cell Sci 2014; 127: 3902–3908.

    Article  CAS  PubMed  Google Scholar 

  24. Suhasini AN, Rawtani NA, Wu Y, Sommers JA, Sharma S, Mosedale G et al. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome. EMBO J 2011; 30: 692–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang J, Chen J, Gong Z . TopBP1 controls BLM protein level to maintain genome stability. Mol Cell 2013; 52: 667–678.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Liu P, Inuzuka H, Wei W . Roles of F-box proteins in cancer. Nat Rev Cancer 2014; 14: 233–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Welcker M, Clurman BE . FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8: 83–93.

    Article  CAS  PubMed  Google Scholar 

  28. Spruck CH, Strohmaier H, Sangfelt O, Muller HM, Hubalek M, Muller-Holzner E et al. hCDC4 gene mutations in endometrial cancer. Cancer Res 2002; 62: 4535–4539.

    CAS  PubMed  Google Scholar 

  29. Kimura T, Gotoh M, Nakamura Y, Arakawa H . hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Sci 2003; 94: 431–436.

    Article  CAS  PubMed  Google Scholar 

  30. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996; 86: 263–274.

    Article  CAS  PubMed  Google Scholar 

  31. Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP . Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 2007; 26: 131–143.

    Article  CAS  PubMed  Google Scholar 

  32. Orlicky S, Tang X, Willems A, Tyers M, Sicheri F . Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 2003; 112: 243–256.

    Article  CAS  PubMed  Google Scholar 

  33. Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 2001; 414: 514–521.

    Article  CAS  PubMed  Google Scholar 

  34. Cohen P, Frame S . The renaissance of GSK3. Nat Rev Mol Cell Biol 2001; 2: 769–776.

    Article  CAS  PubMed  Google Scholar 

  35. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci 2013; 126: 3782–3795.

    Article  CAS  PubMed  Google Scholar 

  36. Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 2004; 428: 77–81.

    Article  CAS  PubMed  Google Scholar 

  37. Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 2003; 12: 381–392.

    Article  CAS  PubMed  Google Scholar 

  38. Bendris N, Lemmers B, Blanchard JM, Arsic N . Cyclin A2 mutagenesis analysis: a new insight into CDK activation and cellular localization requirements. PLoS One 2011; 6: e22879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Boer L, Oakes V, Beamish H, Giles N, Stevens F, Somodevilla-Torres M et al. Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene 2008; 27: 4261–4268.

    Article  CAS  PubMed  Google Scholar 

  40. Rosin MP, German J . Evidence for chromosome instability in vivo in Bloom syndrome: increased numbers of micronuclei in exfoliated cells. Hum Genet 1985; 71: 187–191.

    Article  CAS  PubMed  Google Scholar 

  41. Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 2013; 10: 676–682.

    Article  CAS  PubMed  Google Scholar 

  42. Aguilera A, Garcia-Muse T . Causes of genome instability. Annu Rev Genet 2013; 47: 1–32.

    Article  CAS  PubMed  Google Scholar 

  43. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH . Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011; 333: 1895–1898.

    Article  CAS  PubMed  Google Scholar 

  44. Dai X, North BJ, Inuzuka H . Negative regulation of DAB2IP by Akt and SCFFbw7 pathways. Oncotarget 2014; 5: 3307–3315.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tan M, Zhao Y, Kim SJ, Liu M, Jia L, Saunders TL et al. SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell 2011; 21: 1062–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reavie L, Buckley SM, Loizou E, Takeishi S, Aranda-Orgilles B, Ndiaye-Lobry D et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 2013; 23: 362–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takeishi S, Matsumoto A, Onoyama I, Naka K, Hirao A, Nakayama KI . Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell 2013; 23: 347–361.

    Article  CAS  PubMed  Google Scholar 

  48. Bugreev DV, Yu X, Egelman EH, Mazin AV . Novel pro- and anti-recombination activities of the Bloom's syndrome helicase. Genes Dev 2007; 21: 3085–3094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 2011; 25: 350–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC . Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci USA 2008; 105: 16906–16911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Srivastava V, Modi P, Tripathi V, Mudgal R, De S, Sengupta S . BLM helicase stimulates the ATPase and chromatin-remodeling activities of RAD54. J Cell Sci 2009; 122: 3093–3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tripathi V, Nagarjuna T, Sengupta S . BLM helicase-dependent and -independent roles of 53BP1 during replication stress-mediated homologous recombination. J Cell Biol 2007; 178: 9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perez-Benavente B, Garcia JL, Rodriguez MS, Pineda-Lucena A, Piechaczyk M, Font de Mora J et al. GSK3-SCF(FBXW7) targets JunB for degradation in G2 to preserve chromatid cohesion before anaphase. Oncogene 2013; 32: 2189–2199.

    Article  CAS  PubMed  Google Scholar 

  54. Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C . CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 2006; 119: 4269–4275.

    Article  CAS  PubMed  Google Scholar 

  55. Busino L, Chiesa M, Draetta GF, Donzelli M . Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 2004; 23: 2050–2056.

    Article  CAS  PubMed  Google Scholar 

  56. Melixetian M, Klein DK, Sorensen CS, Helin K . NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 2009; 11: 1247–1253.

    Article  CAS  PubMed  Google Scholar 

  57. Tripathi V, Kaur S, Sengupta S . Phosphorylation-dependent interactions of BLM and 53BP1 are required for their anti-recombinogenic roles during homologous recombination. Carcinogenesis 2008; 29: 52–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Bruce Clurman, Markus Welcker, Jonathan Grim, Ian Hickson, Stephen Elledge, Thanos Halazonetis, Jerry Shay, Nathan Ellis, Bert Vogelstein for plasmids and cells, Simon Gemble for help with SCEs and UFB staining, Priyanka Modi for transfection experiments, Jyoti Kumari for lentivirus-mediated stable line generation and Richa Mudgal for bioinformatic analysis. SS acknowledges National Institute of Immunology core funds, Department of Biotechnology (DBT), India (BT/PR3148/AGR/36/706/2011); Science and Engineering Research Board, India (SR/SO/BB-0124/2013); Indo-French Centre for the Promotion of Advanced Research (IFCPAR) (IFC/4603-A/2011/1250) and Council of Scientific and Industrial Research (CSIR), India [37(1541)/12/EMR-II] for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Sengupta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharat, S., Tripathi, V., Damodaran, A. et al. Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability. Oncogene 35, 1025–1038 (2016). https://doi.org/10.1038/onc.2015.157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.157

This article is cited by

Search

Quick links