Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IGFBP2 potentiates nuclear EGFR–STAT3 signaling

Abstract

Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of epidermal growth factor receptor (EGFR), which subsequently activates signal transducer and activator of transcription factor 3 (STAT3) signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from The Cancer Genome Atlas database for human glioma. A high level of all three proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient data set. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by two distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dobrowolski R, De Robertis EM . Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 2012; 13: 53–60.

    Article  CAS  Google Scholar 

  2. Sorkin A, Von Zastrow M . Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002; 3: 600–614.

    Article  CAS  PubMed  Google Scholar 

  3. Sorkin A, von Zastrow M . Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 2009; 10: 609–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McMahon HT, Boucrot E . Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12: 517–533.

    Article  CAS  PubMed  Google Scholar 

  5. Baxter RC . Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions. J Cell Commun Signal 2013; 7: 179–189.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joy A, Moffett J, Neary K, Mordechai E, Stachowiak EK, Coons S et al. Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 1997; 14: 171–183.

    Article  CAS  PubMed  Google Scholar 

  7. Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA et al. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal "feed-forward-and-gate" signaling module that controls cell growth and differentiation. J Cell Biochem 2003; 90: 662–691.

    Article  CAS  PubMed  Google Scholar 

  8. Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB . Nuclear activities of basic fibroblast growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Biol Cell 1999; 10: 1429–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001; 3: 802–808.

    Article  CAS  PubMed  Google Scholar 

  10. Sarfstein R, Werner H . Minireview: nuclear insulin and insulin-like growth factor-1 receptors: a novel paradigm in signal transduction. Endocrinology 2013; 154: 1672–1679.

    Article  CAS  PubMed  Google Scholar 

  11. Rakowicz-Szulczynska EM, Rodeck U, Herlyn M, Koprowski H . Chromatin binding of epidermal growth factor, nerve growth factor, and platelet-derived growth factor in cells bearing the appropriate surface receptors. Proc Natl Acad Sci USA 1986; 83: 3728–3732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baxter RC . Circulating binding proteins for the insulinlike growth factors. Trends Endocrinol Metab 1993; 4: 91–96.

    Article  CAS  PubMed  Google Scholar 

  13. Clemmons DR . Insulinlike growth factor binding proteins. Trends Endocrinol Metab 1990; 1: 412–417.

    Article  CAS  PubMed  Google Scholar 

  14. Scharf J, Ramadori G, Braulke T, Hartmann H . Synthesis of insulinlike growth factor binding proteins and of the acid-labile subunit in primary cultures of rat hepatocytes, of Kupffer cells, and in cocultures: regulation by insulin, insulinlike growth factor, and growth hormone. Hepatology 1996; 23: 818–827.

    Article  CAS  PubMed  Google Scholar 

  15. Holmes KM, Annala M, Chua CY, Dunlap SM, Liu Y, Hugen N et al. Insulin-like growth factor-binding protein 2-driven glioma progression is prevented by blocking a clinically significant integrin, integrin-linked kinase, and NF-kappaB network. Proc Natl Acad Sci USA 2012; 109: 3475–3480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang GK, Hu L, Fuller GN, Zhang W . An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin alpha5 is essential for IGFBP2-induced cell mobility. J Biol Chem 2006; 281: 14085–14091.

    Article  CAS  PubMed  Google Scholar 

  17. Pereira JJ, Meyer T, Docherty SE, Reid HH, Marshall J, Thompson EW et al. Bimolecular interaction of insulin-like growth factor (IGF) binding protein-2 with alphavbeta3 negatively modulates IGF-I-mediated migration and tumor growth. Cancer Res 2004; 64: 977–984.

    Article  CAS  PubMed  Google Scholar 

  18. Mehrian-Shai R, Chen CD, Shi T, Horvath S, Nelson SF, Reichardt JK et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc Natl Acad Sci USA 2007; 104: 5563–5568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han S, Li Z, Master LM, Master ZW, Wu A . Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin beta1-ERK pathway. Br J Cancer 2014; 111: 1400–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azar WJ, Azar SH, Higgins S, Hu JF, Hoffman AR, Newgreen DF et al. IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of angiogenesis by neuroblastoma cells. Endocrinology 2011; 152: 3332–3342.

    Article  CAS  PubMed  Google Scholar 

  21. Terrien X, Bonvin E, Corroyer S, Tabary O, Clement A, Henrion Caude A . Intracellular colocalization and interaction of IGF-binding protein-2 with the cyclin-dependent kinase inhibitor p21CIP1/WAF1 during growth inhibition. Biochem J 2005; 392: 457–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyako K, Cobb LJ, Francis M, Huang A, Peng B, Pintar JE et al. PAPA-1 Is a nuclear binding partner of IGFBP-2 and modulates its growth-promoting actions. Mol Endocrinol 2009; 23: 169–175.

    Article  CAS  PubMed  Google Scholar 

  23. Hoeflich A, Reisinger R, Schuett BS, Elmlinger MW, Russo VC, Vargas GA et al. Peri/nuclear localization of intact insulin-like growth factor binding protein-2 and a distinct carboxyl-terminal IGFBP-2 fragment in vivo. Biochem Biophys Res Commun 2004; 324: 705–710.

    Article  CAS  PubMed  Google Scholar 

  24. Besnard V, Corroyer S, Trugnan G, Chadelat K, Nabeyrat E, Cazals V et al. Distinct patterns of insulin-like growth factor binding protein (IGFBP)-2 and IGFBP-3 expression in oxidant exposed lung epithelial cells. Biochim Biophys Acta 2001; 1538: 47–58.

    Article  CAS  PubMed  Google Scholar 

  25. Gerrard DE, Okamura CS, Grant AL . Expression and location of IGF binding proteins-2, -4, and -5 in developing fetal tissues. J Anim Sci 1999; 77: 1431–1441.

    Article  CAS  PubMed  Google Scholar 

  26. Green BN, Jones SB, Streck RD, Wood TL, Rotwein P, Pintar JE . Distinct expression patterns of insulin-like growth factor binding proteins 2 and 5 during fetal and postnatal development. Endocrinology 1994; 134: 954–962.

    Article  CAS  PubMed  Google Scholar 

  27. Lee WH, Michels KM, Bondy CA . Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II. Neuroscience 1993; 53: 251–265.

    Article  CAS  PubMed  Google Scholar 

  28. Wood TL, Streck RD, Pintar JE . Expression of the IGFBP-2 gene in post-implantation rat embryos. Development 1992; 114: 59–66.

    Article  CAS  PubMed  Google Scholar 

  29. Huynh H, Zheng J, Umikawa M, Zhang C, Silvany R, Iizuka S et al. IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood 2011; 118: 3236–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuller GN, Rhee CH, Hess KR, Caskey LS, Wang R, Bruner JM et al. Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 1999; 59: 4228–4232.

    CAS  PubMed  Google Scholar 

  31. Busund LT, Richardsen E, Busund R, Ukkonen T, Bjornsen T, Busch C et al. Significant expression of IGFBP2 in breast cancer compared with benign lesions. J Clin Pathol 2005; 58: 361–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yazawa T, Sato H, Shimoyamada H, Okudela K, Woo T, Tajiri M et al. Neuroendocrine cancer-specific up-regulating mechanism of insulin-like growth factor binding protein-2 in small cell lung cancer. Am J Pathol 2009; 175: 976–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunlap SM, Celestino J, Wang H, Jiang R, Holland EC, Fuller GN et al. Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc Natl Acad Sci USA 2007; 104: 11736–11741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Colman H, Zhang L, Sulman EP, McDonald JM, Shooshtari NL, Rivera A et al. A multigene predictor of outcome in glioblastoma. Neuro Oncol 2010; 12: 49–57.

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh D, Hsieh A, Stea B, Ellsworth R . IGFBP2 promotes glioma tumor stem cell expansion and survival. Biochem Biophys Res Commun 2010; 397: 367–372.

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Liu Y, Granberg KJ, Wang Q, Moore LM, Ji P et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene 2014; 34: 1619–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lo HW, Cao X, Zhu H, Ali-Osman F . Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 2008; 14: 6042–6054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scrideli CA, Carlotti Jr CG, Mata JF, Neder L, Machado HR, Oba-Sinjo SM et al. Prognostic significance of co-overexpression of the EGFR/IGFBP-2/HIF-2A genes in astrocytomas. J Neurooncol 2007; 83: 233–239.

    Article  CAS  PubMed  Google Scholar 

  39. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 1994; 91: 7727–7731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ekstrand AJ, Longo N, Hamid ML, Olson JJ, Liu L, Collins VP et al. Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 1994; 9: 2313–2320.

    CAS  PubMed  Google Scholar 

  41. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 2005; 11: 1462–1466.

    Article  CAS  PubMed  Google Scholar 

  42. Shao H, Cheng HY, Cook RG, Tweardy DJ . Identification and characterization of signal transducer and activator of transcription 3 recruitment sites within the epidermal growth factor receptor. Cancer Res 2003; 63: 3923–3930.

    CAS  PubMed  Google Scholar 

  43. Park OK, Schaefer TS, Nathans D . In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc Natl Acad Sci USA 1996; 93: 13704–13708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lo HW, Cao X, Zhu H, Ali-Osman F . Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol Cancer Res 2010; 8: 232–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005; 7: 575–589.

    Article  CAS  PubMed  Google Scholar 

  46. Jaganathan S, Yue P, Paladino DC, Bogdanovic J, Huo Q, Turkson J . A functional nuclear epidermal growth factor receptor, SRC and Stat3 heteromeric complex in pancreatic cancer cells. PLoS One 2011; 6: e19605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung MC . Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res 2005; 65: 338–348.

    CAS  PubMed  Google Scholar 

  48. Hoshino M, Fukui H, Ono Y, Sekikawa A, Ichikawa K, Tomita S et al. Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiology 2007; 74: 15–21.

    Article  CAS  PubMed  Google Scholar 

  49. Xia W, Wei Y, Du Y, Liu J, Chang B, Yu YL et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog 2009; 48: 610–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lo HW, Hung MC . Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 2006; 94: 184–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang H, Wang H, Shen W, Huang H, Hu L, Ramdas L et al. Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 2003; 63: 4315–4321.

    CAS  PubMed  Google Scholar 

  52. Blobel CP . ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 2005; 6: 32–43.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 2006; 10: 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zheng X, Jiang F, Katakowski M, Kalkanis SN, Hong X, Zhang X et al. Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci 2007; 98: 674–684.

    Article  CAS  PubMed  Google Scholar 

  55. Haynik DM, Roma AA, Prayson RA . HER-2/neu expression in glioblastoma multiforme. Appl Immunohistochem Mol Morphol 2007; 15: 56–58.

    Article  PubMed  Google Scholar 

  56. Waage IS, Vreim I, Torp SH . C-erbB2/HER2 in human gliomas, medulloblastomas, and meningiomas: a minireview. Int J Surg Pathol 2013; 21: 573–582.

    Article  PubMed  Google Scholar 

  57. Torp SH, Helseth E, Unsgaard G, Dalen A . C-erbB-2/HER-2 protein in human intracranial tumours. Eur J Cancer 1993; 29A: 1604–1606.

    Article  CAS  PubMed  Google Scholar 

  58. Tuzi NL, Venter DJ, Kumar S, Staddon SL, Lemoine NR, Gullick WJ . Expression of growth factor receptors in human brain tumours. Br J Cancer 1991; 63: 227–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haapasalo H, Hyytinen E, Sallinen P, Helin H, Kallioniemi OP, Isola J . c-erbB-2 in astrocytomas: infrequent overexpression by immunohistochemistry and absence of gene amplification by fluorescence in situ hybridization. Br J Cancer 1996; 73: 620–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Azar WJ, Zivkovic S, Werther GA, Russo VC . IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells. Oncogene 2014; 33: 578–588.

    Article  CAS  PubMed  Google Scholar 

  61. Smalheiser NR . Proteins in unexpected locations. Mol Biol Cell 1996; 7: 1003–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ganesan A, Zhang J . How cells process information: quantification of spatiotemporal signaling dynamics. Protein Sci 2012; 21: 918–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kholodenko BN . Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 2006; 7: 165–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Housden BE, Perrimon N . Spatial and temporal organization of signaling pathways. Trends Biochem Sci 2014; 39: 457–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wiley HS . Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 2003; 284: 78–88.

    Article  CAS  PubMed  Google Scholar 

  66. Tomas A, Futter CE, Eden ER . EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 2014; 24: 26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Pennock S, Chen X, Wang Z . Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 2002; 22: 7279–7290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pennock S, Wang Z . Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling Mol Cell Biol 2003; 23: 5803–5815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miaczynska M, Pelkmans L, Zerial M . Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 2004; 16: 400–406.

    Article  CAS  PubMed  Google Scholar 

  70. Burke P, Schooler K, Wiley HS . Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 2001; 12: 1897–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brand TM, Iida M, Li C, Wheeler DL . The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov Med 2011; 12: 419–432.

    PubMed  PubMed Central  Google Scholar 

  72. Boerner JL, Demory ML, Silva C, Parsons SJ . Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 2004; 24: 7059–7071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I et al. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 2009; 284: 36592–36604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Coffer PJ, Kruijer W . EGF receptor deletions define a region specifically mediating STAT transcription factor activation. Biochem Biophys Res Commun 1995; 210: 74–81.

    Article  CAS  PubMed  Google Scholar 

  75. Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF . Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 2001; 61: 4375–4381.

    CAS  PubMed  Google Scholar 

  76. Joki T, Heese O, Nikas DC, Bello L, Zhang J, Kraeft SK et al. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res 2000; 60: 4926–4931.

    CAS  PubMed  Google Scholar 

  77. Xu K, Wang L, Shu HK . COX-2 overexpression increases malignant potential of human glioma cells through Id1. Oncotarget 2014; 5: 1241–1252.

    Article  PubMed  Google Scholar 

  78. Yang DI, Yin JH, Mishra S, Mishra R, Hsu CY . NO-mediated chemoresistance in C6 glioma cells. Ann NY Acad Sci 2002; 962: 8–17.

    Article  CAS  PubMed  Google Scholar 

  79. Giannopoulou E, Ravazoula P, Kalofonos H, Makatsoris T, Kardamakis D . Expression of HIF-1alpha and iNOS in astrocytic gliomas: a clinicopathological study. In Vivo 2006; 20: 421–425.

  80. Hara A, Okayasu I . Cyclooxygenase-2 and inducible nitric oxide synthase expression in human astrocytic gliomas: correlation with angiogenesis and prognostic significance. Acta Neuropathol 2004; 108: 43–48.

    Article  CAS  PubMed  Google Scholar 

  81. Jahani-Asl A, Bonni A . iNOS: a potential therapeutic target for malignant glioma. Curr Mol Med 2013; 13: 1241–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE et al. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 2008; 3: e3769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Orian JM, Vasilopoulos K, Yoshida S, Kaye AH, Chow CW, Gonzales MF . Overexpression of multiple oncogenes related to histological grade of astrocytic glioma. Br J Cancer 1992; 66: 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Herms JW, von Loewenich FD, Behnke J, Markakis E, Kretzschmar HA . c-myc oncogene family expression in glioblastoma and survival. Surg Neurol 1999; 51: 536–542.

    Article  CAS  PubMed  Google Scholar 

  85. Schneider MR, Wolf E . The epidermal growth factor receptor ligands at a glance. J Cell Physiol 2009; 218: 460–466.

    Article  CAS  PubMed  Google Scholar 

  86. Swindle CS, Tran KT, Johnson TD, Banerjee P, Mayes AM, Griffith L et al. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 2001; 154: 459–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaser MR, Lakshmanan J, Fisher DA . Comparison between epidermal growth factor, transforming growth factor-alpha and EGF receptor levels in regions of adult rat brain. Brain Res Mol Brain Res 1992; 16: 316–322.

    Article  CAS  PubMed  Google Scholar 

  88. Kudlow JE, Leung AW, Kobrin MS, Paterson AJ, Asa SL . Transforming growth factor-alpha in the mammalian brain. Immunohistochemical detection in neurons and characterization of its mRNA. J Biol Chem 1989; 264: 3880–3883.

    Article  CAS  PubMed  Google Scholar 

  89. Ferrer I, Blanco R, Carulla M, Condom M, Alcantara S, Olive M et al. Transforming growth factor-alpha immunoreactivity in the developing and adult brain. Neuroscience 1995; 66: 189–199.

    Article  CAS  PubMed  Google Scholar 

  90. Lazar LM, Blum M . Regional distribution and developmental expression of epidermal growth factor and transforming growth factor-alpha mRNA in mouse brain by a quantitative nuclease protection assay. J Neurosci 1992; 12: 1688–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Becher OJ, Peterson KM, Khatua S, Santi MR, MacDonald TJ . IGFBP2 is overexpressed by pediatric malignant astrocytomas and induces the repair enzyme DNA-PK. J Child Neurol 2008; 23: 1205–1213.

    Article  PubMed  PubMed Central  Google Scholar 

  92. McDonald KL, O'Sullivan MG, Parkinson JF, Shaw JM, Payne CA, Brewer JM et al. IQGAP1 and IGFBP2: valuable biomarkers for determining prognosis in glioma patients. J Neuropathol Exp Neurol 2007; 66: 405–417.

    Article  CAS  PubMed  Google Scholar 

  93. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS . A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 2010; 10: 59–64.

    Article  CAS  PubMed  Google Scholar 

  94. Salomon DS, Brandt R, Ciardiello F, Normanno N . Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19: 183–232.

    Article  CAS  PubMed  Google Scholar 

  95. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 2000; 60: 6617–6622.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Oliver Bogler, Dr Zhimin Lu, Dr Frederick Lang, Dr Paul Chiao and Dr Tapio Visakorpi for their helpful comments and discussions and Kathryn L Hale, Department of Scientific Publications at MD Anderson Cancer Center, for editing the manuscript. We thank Ville Kytölä for contributions to the immunohistochemical association analyses. This work was partially supported by grants from the US National Institutes of Health (CA098503, CA141432 and CA143835 to WZ and GNF and U24 CA143835 to WZ), by funding for the Cancer Systems Informatics Center from the National Foundation for Cancer Research (to WZ), by NIH/NCI grant P30CA016672 to MD Anderson Cancer Center supporting the Flow Cytometry and Cellular Imaging Core Facility and by the Finnish Funding Agency for Technology and Innovation Finland Distinguished Professor program and the Academy of Finland (grant 259038 to KG). WKC is a Fellow of the National Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, C., Liu, Y., Granberg, K. et al. IGFBP2 potentiates nuclear EGFR–STAT3 signaling. Oncogene 35, 738–747 (2016). https://doi.org/10.1038/onc.2015.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.131

This article is cited by

Search

Quick links