Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type I receptor internalization

Abstract

Syntenin, a tandem PDZ domain containing scaffold protein, functions as a positive regulator of cancer cell progression in several human cancers. We report here that syntenin positively regulates transforming growth factor (TGF)-β1-mediated Smad activation and the epithelial-to-mesenchymal transition (EMT) by preventing caveolin-1-mediated internalization of TGF-β type I receptor (TβRI). Knockdown of syntenin suppressed TGF-β1-mediated cell migration, transcriptional responses and Smad2/3 activation in various types of cells; however, overexpression of syntenin facilitated TGF-β1-mediated responses. In particular, syntenin knockdown abolished both the basal and TGF-β1-mediated repression of E-cadherin expression, as well as induction of vimentin expression along with Snail and Slug upregulation; thus, blocking the TGF-β1-induced EMT in A549 cells. In contrast, overexpression of syntenin exhibited the opposite effect. Knockdown of syntenin-induced ubiquitination and degradation of TβRI, but not TGF-β type II receptor, leading to decreased TβRI expression at the plasma membrane. Syntenin associated with TβRI at its C-terminal domain and a syntenin mutant lacking C-terminal domain failed to increase TGF-β1-induced responses. Biochemical analyzes revealed that syntenin inhibited the interaction between caveolin-1 and TβRI and knockdown of syntenin induced a massive internalization of TβRI and caveolin-1 from lipid rafts, indicating that syntenin may increase TGF-β signaling by inhibiting caveolin-1-dependent internalization of TβRI. Moreover, a positive correlation between syntenin expression and phospho-Smad2 levels is observed in human lung tumors. Taken together, these findings demonstrate that syntenin may act as an important positive regulator of TGF-β signaling by regulating caveolin-1-mediated internalization of TβRI; thus, providing a novel function for syntenin that is linked to cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Derynck R, Zhang YE . Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003; 425: 577–584.

    Article  CAS  Google Scholar 

  2. Attisano L, Wrana JL . Signal transduction by the TGF-β superfamily. Science 2002; 296: 1646–1647.

    Article  CAS  Google Scholar 

  3. Zavadil J, Bottinger EP . TGF-β and epithelial-to-mesenchymal transitions. Oncogene 2005; 24: 5764–5774.

    Article  CAS  Google Scholar 

  4. Bierie B, Moses HL . Tumour microenvironment: TGF-β: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506–520.

    Article  CAS  Google Scholar 

  5. Zhang YE . Non-Smad pathways in TGF-β signaling. Cell Res 2009; 19: 128–139.

    Article  CAS  Google Scholar 

  6. Itoh S, ten Dijke P . Negative regulation of TGF-β receptor/Smad signal transduction. Curr Opin Cell Biol 2007; 19: 176–184.

    Article  CAS  Google Scholar 

  7. Kang JS, Liu C, Derynck R . New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol 2009; 19: 385–394.

    Article  CAS  Google Scholar 

  8. Chen YG . Endocytic regulation of TGF-β signaling. Cell Res 2009; 19: 58–70.

    Article  Google Scholar 

  9. Lonn P, Moren A, Raja E, Dahl M, Moustakas A . Regulating the stability of TGFβ receptors and Smads. Cell Res 2009; 19: 21–35.

    Article  Google Scholar 

  10. Derynck R, Akhurst RJ, Balmain A . TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.

    Article  CAS  Google Scholar 

  11. Zavadil J, Bottinger EP . TGF-β and epithelial-to-mesenchymal transitions. Oncogene 2005; 24: 5764–5774.

    Article  CAS  Google Scholar 

  12. Christofori G . New signals from the invasive front. Nature 2006; 441: 444–450.

    Article  CAS  Google Scholar 

  13. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  Google Scholar 

  14. Huber MA, Kraut N, Beug H . Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548–558.

    Article  CAS  Google Scholar 

  15. Xu J, Lamouille S, Derynck R . TGF-β-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156–172.

    Article  CAS  Google Scholar 

  16. Koroll M, Rathjen FG, Volkmer H . The neural cell recognition molecule neurofascin interacts with syntenin-1 but not with syntenin-2, both of which reveal self associating activity. J Biol Chem 2001; 276: 10646–10654.

    Article  CAS  Google Scholar 

  17. Beekman JM, Coffer PJ . The ins and outs of syntenin, a multifunctional intracellular adaptor protein. J Cell Sci 2008; 121: 1349–1355.

    Article  CAS  Google Scholar 

  18. Sarkar D, Boukerche H, Su ZZ, Fisher PB . mda-9/Syntenin: more than just a simple adapter protein when it comes to cancer metastasis. Cancer Res 2008; 68: 3087–3093.

    Article  CAS  Google Scholar 

  19. Zimmermann P, Meerschaert K, Reekmans G, Leenaerts I, Small JV, Vandekerckhove J et al. PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Mol Cell 2002; 9: 1215–1225.

    Article  CAS  Google Scholar 

  20. Kang BS, Cooper DR, Devedjiev Y, Derewenda U, Derewenda ZS . PDZ tandem of human syntenin: crystal structure and functional properties. Structure 2003; 11: 459–468.

    Article  CAS  Google Scholar 

  21. Grembecka J, Cierpicki T, Devedjiev Y, Derewenda U, Kang BS, Bushweller JH et al. The binding of the PDZ tandem of syntenin to target proteins. Biochemistry 2006; 45: 3674–3683.

    Article  CAS  Google Scholar 

  22. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012; 14: 677–685.

    Article  CAS  Google Scholar 

  23. Koo TH, Lee JJ, Kim EM, Kim KW, Kim HD, Lee JH . Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines. Oncogene 2002; 21: 4080–4088.

    Article  CAS  Google Scholar 

  24. Dasgupta S, Menezes ME, Das SK, Emdad L, Janjic A, Bhatia S et al. Novel role of MDA-9/syntenin in regulating urothelial cell proliferation by modulating EGFR signaling. Clin Cancer Res 2013; 19: 4621–4633.

    Article  CAS  Google Scholar 

  25. Yang Y, Hong Q, Shi P, Liu Z, Luo J, Shao Z . Elevated expression of syntenin in breast cancer is correlated with lymph node metastasis and poor patient survival. Breast Cancer Res 2013; 15: R50.

    Article  CAS  Google Scholar 

  26. Kegelman TP, Das SK, Hu B, Bacolod MD, Fuller CE, Menezes ME et al. MDA-9/syntenin is a key regulator of glioma pathogenesis. Neuro Oncol 2014; 16: 50–61.

    Article  CAS  Google Scholar 

  27. Boukerche H, Su ZZ, Emdad L, Sarkar D, Fisher PB . mda-9/Syntenin regulates the metastatic phenotype in human melanoma cells by activating nuclear factor-κB. Cancer Res 2007; 67: 1812–1822.

    Article  CAS  Google Scholar 

  28. Boukerche H, Su ZZ, Prévot C, Sarkar D, Fisher PB . mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci USA 2008; 105: 15914–15919.

    Article  CAS  Google Scholar 

  29. Hwangbo C, Kim J, Lee JJ, Lee JH . Activation of the integrin effector kinase focal adhesion kinase in cancer cells is regulated by crosstalk between protein kinase Cα and the PDZ adapter protein mda-9/Syntenin. Cancer Res 2010; 70: 1645–1655.

    Article  CAS  Google Scholar 

  30. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 2009; 136: 123–135.

    Article  CAS  Google Scholar 

  31. Kang Y, Massagué J . Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004; 118: 277–279.

    Article  CAS  Google Scholar 

  32. Shi J, Wang DM, Wang CM, Hu Y, Liu AH, Zhang YL et al. Insulin receptor substrate-1 suppresses transforming growth factor-β1-mediated epithelial-mesenchymal transition. Cancer Res 2009; 69: 7180–7187.

    Article  CAS  Google Scholar 

  33. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T et al. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001; 276: 12477–12480.

    Article  CAS  Google Scholar 

  34. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell 2000; 6: 1365–1375.

    Article  CAS  Google Scholar 

  35. Razani B, Zhang XL, Bitzer M, von Gersdorff G, Böttinger EP, Lisanti MP . Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with the TGF- β type I receptor. J Biol Chem 2001; 276: 6727–6738.

    Article  CAS  Google Scholar 

  36. Lee JM, Dedhar S, Kalluri R, Thompson EW . The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973–981.

    Article  CAS  Google Scholar 

  37. Schlessinger J . Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 2002; 110: 669–672.

    Article  CAS  Google Scholar 

  38. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP . Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 2008; 15: 209–219.

    Article  CAS  Google Scholar 

  39. Penheiter SG, Mitchell H, Garamszegi N, Edens M, Doré JJ Jr, Leof EB . Internalization-dependent and -independent requirements for transforming growth factor-β receptor signaling via the Smad pathway. Mol Cell Biol 2002; 22: 4750–4759.

    Article  CAS  Google Scholar 

  40. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL . Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 2003; 5: 410–421.

    Article  CAS  Google Scholar 

  41. Zhao B, Wang Q, Du J, Luo S, Xia J, Chen YG . PICK1 promotes caveolin-dependent degradation of TGF-β type I receptor. Cell Res 2012; 22: 1467–1478.

    Article  CAS  Google Scholar 

  42. Allen JA, Halverson-Tamboli RA, Rasenick MM . Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 2007; 8: 128–140.

    Article  CAS  Google Scholar 

  43. Browman DT, Hoegg MB, Robbins SM . The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 2007; 17: 394–402.

    Article  CAS  Google Scholar 

  44. Van Rheenen J, Achame EM, Janssen H, Calafat J, Jalink K . PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J 2005; 24: 1664–1673.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Korean Health Technology R&D Project (A111311), Ministry of Health and Welfare, Republic of Korea and the National Research Foundation of Korea (NRF, 2013R1A1A2009026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-H Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwangbo, C., Tae, N., Lee, S. et al. Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type I receptor internalization. Oncogene 35, 389–401 (2016). https://doi.org/10.1038/onc.2015.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.100

This article is cited by

Search

Quick links