Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis

Subjects

Abstract

Elevated levels of the inducible heat-shock protein 70 (Hsp72) have been implicated in mammary tumorigenesis in histological investigations of human breast cancer. We therefore examined the role of Hsp72 in mice, using animals in which the hsp70 gene was inactivated. We used a spontaneous tumor system with mice expressing the polyomavirus middle T (PyMT) oncogene under control of the mouse mammary tumor virus (MMTV) long-terminal repeat (MMT mice). These mice developed spontaneous, metastatic mammary cancer. We then showed Hsp72 to be upregulated in a fraction of mammary cancer initiating cells (CIC) within the MMT tumor cell population. These cells were characterized by elevated surface levels of stem cell markers CD44 and Sca1 and by rapid metastasis. Inactivation of the hsp70 gene delayed the initiation of mammary tumors. This delay in tumor initiation imposed by loss of hsp70 was correlated with a decreased pool of CIC. Interestingly, hsp70 knockout significantly reduced invasion and metastasis by mammary tumor cells and implicated its product Hsp72 in cell migration and formation of secondary neoplasms. Impaired tumorigenesis and metastasis in hsp70-knockout MMT mice was associated with downregulation of the met gene and reduced activition of the oncogenic c-Met protein. These experiments therefore showed Hsp72 to be involved in the growth and progression of mammary carcinoma and highlighted this protein as a potential target for anticancer drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Dang CV . Links between metabolism and cancer. Genes Dev 2012; 26: 877–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Calderwood SK . Molecular cochaperones: tumor growth and cancer treatment. Scientifica 2013; 2013: 217513.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Calderwood SK, Gong J . Molecular chaperones in mammary cancer growth and breast tumor therapy. J Cell Biochem 2012; 113: 1096–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Craig EA . The heat shock response. CRC Crit Rev Biochem 1985; 18: 239–280.

    Article  CAS  PubMed  Google Scholar 

  6. Ciocca DR, Calderwood SK . Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005; 10: 86–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 2007; 25: 5410–5417.

    Article  CAS  PubMed  Google Scholar 

  8. Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 2011; 17: 5132–5139.

    Article  CAS  PubMed  Google Scholar 

  9. Neckers L, Workman P . Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 2012; 18: 64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barrott JJ, Haystead TA . Hsp90, an unlikely ally in the war on cancer. FEBS J 2013; 280: 1381–1396.

    Article  CAS  PubMed  Google Scholar 

  11. Powers MV, Jones K, Barillari C, Westwood I, van Montfort RL, Workman P . Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle 2010; 9: 1542–1550.

    Article  CAS  PubMed  Google Scholar 

  12. Goloudina AR, Demidov ON, Garrido C . Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 2012; 325: 117–124.

    Article  CAS  PubMed  Google Scholar 

  13. Galluzzi L, Giordanetto F, Kroemer G . Targeting HSP70 for cancer therapy. Mol Cell 2009; 36: 176–177.

    Article  CAS  PubMed  Google Scholar 

  14. Lindquist S, Craig EA . The heat-shock proteins. Annu Rev Genet 1988; 22: 631–677.

    Article  CAS  PubMed  Google Scholar 

  15. Bukau B, Horwich AL . The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92: 351–366.

    Article  CAS  PubMed  Google Scholar 

  16. Tang D, Khaleque MA, Jones EL, Theriault JR, Li C, Wong WH et al. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 2005; 10: 46–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlesinger MJ . How the cell copes with stress and the function of heat shock proteins. Pediatr Res 1994; 36: 1–6.

    Article  CAS  PubMed  Google Scholar 

  18. Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M et al. Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 2004; 24: 899–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Georgopoulos C, Welch WJ . Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 1993; 9: 601–634.

    Article  CAS  PubMed  Google Scholar 

  20. Calderwood SK . HSF1, a versatile factor in tumorogenesis. Curr Mol Med 2012; 12: 1102–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rerole AL, Jego G, Garrido C . Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol Biol 2011; 787: 205–230.

    Article  CAS  PubMed  Google Scholar 

  22. Gao T, Newton AC . The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J. Biol Chem 2002; 277: 31585–31592.

    Article  CAS  Google Scholar 

  23. Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S et al. Hsp70-bag3 interactions regulate cancer-related signaling networks. Cancer Res 2014; 74: 4731–4740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang Y, Jung WY, Lee H, Jung W, Lee E, Shin BK et al. Prognostic significance of heat shock protein 70 expression in early gastric carcinoma. Korean J Pathol 2013; 47: 219–226.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kluger HM, Chelouche Lev D, Kluger Y, McCarthy MM, Kiriakova G, Camp RL et al. Using a xenograft model of human breast cancer metastasis to find genes associated with clinically aggressive disease. Cancer Res 2005; 65: 5578–5587.

    Article  CAS  PubMed  Google Scholar 

  26. Sun B, Zhang S, Zhang D, Li Y, Zhao X, Luo Y et al. Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer. Clin Cancer Res 2008; 14: 7050–7059.

    Article  CAS  PubMed  Google Scholar 

  27. Kalogeraki A, Giannikaki E, Tzardi M, Kafousi M, Ieromonachou P, Dariviannaki K et al. Correlation of heat shock protein (HSP70) expression with cell proliferation (MIB1), estrogen receptors (ER) and clinicopathological variables in invasive ductal breast carcinomas. J Exp Clin Cancer Res 2007; 26: 367–368.

    CAS  PubMed  Google Scholar 

  28. Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M . Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 2005; 19: 570–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thanner F, Sutterlin MW, Kapp M, Rieger L, Kristen P, Dietl J et al. Heat-shock protein 70 as a prognostic marker in node-negative breast cancer. Anticancer Res 2003; 23: 1057–1062.

    CAS  PubMed  Google Scholar 

  30. Nakajima M, Kuwano H, Miyazaki T, Masuda N, Kato H . Significant correlation between expression of heat shock proteins 27, 70 and lymphocyte infiltration in esophageal squamous cell carcinoma. Cancer Lett 2002; 178: 99–106.

    Article  CAS  PubMed  Google Scholar 

  31. Liu FF, Miller N, Levin W, Zanke B, Cooper B, Henry M et al. The potential role of HSP70 as an indicator of response to radiation and hyperthermia treatments for recurrent breast cancer. Int J Hyperthermia 1996; 12: 197–208.

    Article  CAS  PubMed  Google Scholar 

  32. Pocaly M, Lagarde V, Etienne G, Ribeil JA, Claverol S, Bonneu M et al. Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia 2007; 21: 93–101.

    Article  CAS  PubMed  Google Scholar 

  33. Guy CT, Cardiff RD, Muller WJ . Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weng D, Penzner JH, Song B, Koido S, Calderwood SK, Gong J . Metastasis is an early event in mouse mammary carcinomas and is associated with cells bearing stem cell markers. Breast Cancer Res 2012; 14: R18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grange C, Lanzardo S, Cavallo F, Camussi G, Bussolati B . Sca-1 identifies the tumor-initiating cells in mammary tumors of BALB-neuT transgenic mice. Neoplasia 2008; 10: 1433–1443.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li F, Tiede B, Massague J, Kang Y . Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007; 17: 3–14.

    Article  CAS  PubMed  Google Scholar 

  37. Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, Hankinson SE et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci USA 2011; 108: 18378–18383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chou SD, Prince T, Gong J, Calderwood SK . mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS ONE 2012; 7: e39679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khaleque MA, Bharti A, Gong J, Gray PJ, Sachdev V, Ciocca DR et al. Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene 2008; 27: 1886–1893.

    Article  CAS  PubMed  Google Scholar 

  40. Kouspou MM, Price JT . Analysis of cellular migration using a two-chamber methodology. Methods Mol Biol 2011; 787: 303–317.

    Article  CAS  PubMed  Google Scholar 

  41. Guy CT, Muthuswamy SK, Cardiff RD, Soriano P, Muller WJ . Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev 1994; 8: 23–32.

    Article  CAS  PubMed  Google Scholar 

  42. Mukherjee P, Madsen CS, Ginardi AR, Tinder TL, Jacobs F, Parker J et al. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer. J Immunother 2003; 26: 47–62.

    Article  CAS  PubMed  Google Scholar 

  43. Xia J, Tanaka Y, Koido S, Liu C, Mukherjee P, Gendler SJ et al. Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J Immunol 2003; 170: 1980–1986.

    Article  CAS  PubMed  Google Scholar 

  44. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K et al. C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer 2005; 113: 678–682.

    Article  CAS  PubMed  Google Scholar 

  45. Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA . Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Hormones Cancer 2012; 3: 14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meng L, Hunt C, Yaglom JA, Gabai VL, Sherman MY . Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene 2011; 30: 2836–2845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cardiff RD, Muller WJ . Transgenic mouse models of mammary tumorigenesiss. Cancer Surv 1993; 16: 97–113.

    CAS  PubMed  Google Scholar 

  48. Trusolino L, Bertotti A, Comoglio PM . MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11: 834–848.

    Article  CAS  PubMed  Google Scholar 

  49. Teng Y, Ngoka L, Mei Y, Lesoon L, Cowell JK . HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. J Biol Chem 2012; 287: 10051–10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boroughs LK, Antonyak MA, Johnson JL, Cerione RA . A unique role for heat shock protein 70 and its binding partner tissue transglutaminase in cancer cell migration. J Biol Chem 2011; 286: 37094–37107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C . Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995; 376: 768–771.

    Article  CAS  PubMed  Google Scholar 

  52. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    Article  CAS  PubMed  Google Scholar 

  53. Chmielowiec J, Borowiak M, Morkel M, Stradal T, Munz B, Werner S et al. c-Met is essential for wound healing in the skin. J Cell Biol 2007; 177: 151–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gurtner GC, Werner S, Barrandon Y, Longaker MT . Wound repair and regeneration. Nature 2008; 453: 314–321.

    Article  CAS  PubMed  Google Scholar 

  55. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W . Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 1990; 111: 2097–2108.

    Article  CAS  PubMed  Google Scholar 

  56. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  57. Boccaccio C, Comoglio PM . Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 2006; 6: 637–645.

    Article  CAS  PubMed  Google Scholar 

  58. Gallego MI, Bierie B, Hennighausen L . Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene 2003; 22: 8498–8508.

    Article  CAS  PubMed  Google Scholar 

  59. Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 1998; 58: 5157–5167.

    CAS  PubMed  Google Scholar 

  60. Ghoussoub RA, Dillon DA, D'Aquila T, Rimm EB, Fearon ER, Rimm DL . Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer 1998; 82: 1513–1520.

    Article  CAS  PubMed  Google Scholar 

  61. Lee WY, Chen HH, Chow NH, Su WC, Lin PW, Guo HR . Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clin Cancer Res 2005; 11: 2222–2228.

    Article  CAS  PubMed  Google Scholar 

  62. Takeuchi H, Bilchik A, Saha S, Turner R, Wiese D, Tanaka M et al. c-MET expression level in primary colon cancer: a predictor of tumor invasion and lymph node metastases. Clin Cancer Res 2003; 9: 1480–1488.

    CAS  PubMed  Google Scholar 

  63. Gomez AV, Galleguillos D, Maass JC, Battaglioli E, Kukuljan M, Andres ME . CoREST represses the heat shock response mediated by HSF1. Mol Cell 2008; 31: 222–231.

    Article  CAS  PubMed  Google Scholar 

  64. Kishor A, Tandukar B, Ly YV, Toth EA, Suarez Y, Brewer G et al. Hsp70 is a novel posttranscriptional regulator of gene expression that binds and stabilizes selected mRNAs containing AU-rich elements. Mol Cell Biol 2013; 33: 71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Slattery ML, John E, Torres-Mejia G, Stern M, Lundgreen A, Hines L et al. Matrix metalloproteinase genes are associated with breast cancer risk and survival: the Breast Cancer Health Disparities Study. PLoS ONE 2013; 8: e63165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang Y, Wang M, Celiker MY, Liu YE, Sang QX, Goldberg ID et al. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res 2001; 61: 2365–2370.

    CAS  PubMed  Google Scholar 

  67. Stevenson MA, Calderwood SK . Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain. Mol Cell Biol 1990; 10: 1234–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weng D, Song B, Koido S, Calderwood SK, Gong J . Immunotherapy of radioresistant mammary tumors with early metastasis using molecular chaperone vaccines combined with ionizing radiation. J Immunol. 2013; 191: 755–763.

    Article  CAS  PubMed  Google Scholar 

  69. Rodriguez LG, Wu X, Guan JL . Wound-healing assay. Methods Mol Biol 2005; 294: 23–29.

    PubMed  Google Scholar 

  70. Eguchi T, Watanabe K, Hara ES, Ono M, Kuboki T, Calderwood SK . OstemiR: a novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesencymal stem cells. PLoS ONE 2013; 8: e58796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Department of Radiation Oncology, Beth Israel Deaconess Medical Center. This work was supported by NIH research grants R01CA119045, RO1CA47407 and RO1CA176326 as well as the Harvard JCRT Foundation. We are grateful to Buzz Hunt for the kind gift of the hsp70 knockout mice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Gong or S K Calderwood.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Weng, D., Eguchi, T. et al. Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene 34, 5460–5471 (2015). https://doi.org/10.1038/onc.2015.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.1

This article is cited by

Search

Quick links