Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility

Abstract

Epithelial-to-mesenchymal transition (EMT) promotes cell motility, which is important for the metastasis of malignant cells, and blocks CD95-mediated apoptotic signaling triggered by immune cells and chemotherapeutic regimens. CD95L, the cognate ligand of CD95, can be cleaved by metalloproteases and released as a soluble molecule (cl-CD95L). Unlike transmembrane CD95L, cl-CD95L does not induce apoptosis but triggers cell motility. Electron paramagnetic resonance was used to show that EMT and cl-CD95L treatment both led to augmentation of plasma membrane fluidity that was instrumental in inducing cell migration. Compaction of the plasma membrane is modulated, among other factors, by the ratio of certain lipids such as sphingolipids in the membrane. An integrative analysis of gene expression in NCI tumor cell lines revealed that expression of ceramide synthase-6 (CerS6) decreased during EMT. Furthermore, pharmacological and genetic approaches established that modulation of CerS6 expression/activity in cancer cells altered the level of C16-ceramide, which in turn influenced plasma membrane fluidity and cell motility. Therefore, this study identifies CerS6 as a novel EMT-regulated gene that has a pivotal role in the regulation of cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Strasser A, Jost PJ, Nagata S . The many roles of FAS receptor signaling in the immune system. Immunity 2009; 30: 180–192.

    Article  CAS  Google Scholar 

  2. Hoogwater FJ, Nijkamp MW, Smakman N, Steller EJ, Emmink BL, Westendorp BF et al. Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 2010; 138: 2357–2367.

    Article  CAS  Google Scholar 

  3. Kleber S, Sancho-Martinez I, Wiestler B, Beisel A, Gieffers C, Hill O et al. Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 2008; 13: 235–248.

    Article  CAS  Google Scholar 

  4. Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C et al. The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 2011; 9: e1001090.

    Article  CAS  Google Scholar 

  5. O' Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 2009; 461: 659–663.

    Article  CAS  Google Scholar 

  6. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–5588.

    Article  CAS  Google Scholar 

  7. Algeciras-Schimnich A, Pietras EM, Barnhart BC, Legembre P, Vijayan S, Holbeck SL et al. Two CD95 tumor classes with different sensitivities to antitumor drugs. Proc Natl Acad Sci USA 2003; 100: 11445–11450.

    CAS  Google Scholar 

  8. Hannun YA, Obeid LM . Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9: 139–150.

    Article  CAS  Google Scholar 

  9. Mullen TD, Hannun YA, Obeid LM . Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 2012; 441: 789–802.

    Article  CAS  Google Scholar 

  10. Weinmann A, Galle PR, Teufel A . LASS6, an additional member of the longevity assurance gene family. Int J Mol Med 2005; 16: 905–910.

    CAS  PubMed  Google Scholar 

  11. Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M . Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 2007; 92: 502–516.

    Article  CAS  Google Scholar 

  12. Goni FM, Alonso A . Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 2009; 1788: 169–177.

    Article  CAS  Google Scholar 

  13. Gulbins E, Dreschers S, Wilker B, Grassme H . Ceramide, membrane rafts and infections. J Mol Med 2004; 82: 357–363.

    Article  CAS  Google Scholar 

  14. Silva LC, Ben David O, Pewzner-Jung Y, Laviad EL, Stiban J, Bandyopadhyay S et al. Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 2012; 53: 430–436.

    Article  CAS  Google Scholar 

  15. Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J et al. A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem 2010; 285: 10902–10910.

    Article  CAS  Google Scholar 

  16. Nakazawa I, Iwaizumi M . A role of the cancer cell membrane fluidity in the cancer metastases: an ESR study. Tohoku J Exp Med 1989; 157: 193–198.

    Article  CAS  Google Scholar 

  17. Sok M, Sentjurc M, Schara M, Stare J, Rott T . Cell membrane fluidity and prognosis of lung cancer. Ann Thorac Surg 2002; 73: 1567–1571.

    Article  Google Scholar 

  18. Taraboletti G, Perin L, Bottazzi B, Mantovani A, Giavazzi R, Salmona M . Membrane fluidity affects tumor-cell motility, invasion and lung-colonizing potential. Int J Cancer 1989; 44: 707–713.

    Article  CAS  Google Scholar 

  19. Zeisig R, Koklic T, Wiesner B, Fichtner I, Sentjurc M . Increase in fluidity in the membrane of MT3 breast cancer cells correlates with enhanced cell adhesion in vitro and increased lung metastasis in NOD/SCID mice. Arch Biochem Biophys 2007; 459: 98–106.

    Article  CAS  Google Scholar 

  20. Alonso A, Meirelles NC, Tabak M . Effect of hydration upon the fluidity of intercellular membranes of stratum corneum: an EPR study. Biochim Biophys Acta 1995; 1237: 6–15.

    Article  Google Scholar 

  21. Luciano L, Konitz H, Reale E . Localization of cholesterol in the colonic epithelium of the guinea pig: regional differences and functional implications. Cell Tissue Res 1989; 258: 339–347.

    Article  CAS  Google Scholar 

  22. Vlasic N, Medow MS, Schwarz SM, Pritchard Jr. KA, Stemerman MB . Lipid fluidity modulates platelet aggregation and agglutination in vitro. Life Sci 1993; 53: 1053–1060.

    Article  CAS  Google Scholar 

  23. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000; 24: 227–235.

    Article  CAS  Google Scholar 

  24. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  Google Scholar 

  25. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 2001; 15: 50–65.

    Article  CAS  Google Scholar 

  26. Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 2002; 22: 2111–2123.

    Article  CAS  Google Scholar 

  27. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 2008; 3: e2888.

    Article  Google Scholar 

  28. Hesling C, Fattet L, Teyre G, Jury D, Gonzalo P, Lopez J et al. Antagonistic regulation of EMT by TIF1gamma and Smad4 in mammary epithelial cells. EMBO Rep 2011; 12: 665–672.

    Article  CAS  Google Scholar 

  29. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  Google Scholar 

  30. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    Article  CAS  Google Scholar 

  31. Jezequel P, Frenel JS, Campion L, Guerin-Charbonnel C, Gouraud W, Ricolleau G et al. bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses. Database (Oxford) 2013; 2013: bas060.

    Article  Google Scholar 

  32. Wang E, Norred WP, Bacon CW, Riley RT, Merrill Jr. AH . Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem 1991; 266: 14486–14490.

    CAS  PubMed  Google Scholar 

  33. Guan F, Handa K, Hakomori SI . Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci USA 2009; 106: 7461–7466.

    Article  CAS  Google Scholar 

  34. Asano S, Kitatani K, Taniguchi M, Hashimoto M, Zama K, Mitsutake S et al. Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol Cell Biol 2012; 32: 3242–3252.

    Article  CAS  Google Scholar 

  35. Hanai N, Dohi T, Nores GA, Hakomori S . A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J Biol Chem 1988; 263: 6296–6301.

    CAS  PubMed  Google Scholar 

  36. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N . Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci USA 1995; 92: 5087–5091.

    Article  CAS  Google Scholar 

  37. Malleter M, Tauzin S, Bessede A, Castellano R, Goubard A, Godey F et al. CD95L cell surface cleavage triggers a prometastatic signaling pathway in triple-negative breast cancer. Cancer Res 2013; 73: 6711–6721.

    Article  CAS  Google Scholar 

  38. Xu L, Deng X . Suppression of cancer cell migration and invasion by protein phosphatase 2A through dephosphorylation of mu- and m-calpains. J Biol Chem 2006; 281: 35567–35575.

    Article  CAS  Google Scholar 

  39. Konishi H, Karakas B, Abukhdeir AM, Lauring J, Gustin JP, Garay JP et al. Knock-in of mutant K-ras in nontumorigenic human epithelial cells as a new model for studying K-ras mediated transformation. Cancer Res 2007; 67: 8460–8467.

    Article  CAS  Google Scholar 

  40. Sergent O, Tomasi A, Ceccarelli D, Masini A, Nohl H, Cillard P et al. Combination of iron overload plus ethanol and ischemia alone give rise to the same endogenous free iron pool. Biometals 2005; 18: 567–575.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the L3 and microscopy facilities of the SFR Biosit (Université de Rennes-1, Rennes, France) for their technical assistance. We thank Nicole Therville and Julia Rochotte for their technical assistance. We also acknowledge the assistance of Dr Pauline Le Faouder and Dr Justine Bertrand-Michel from the lipidomic facilities (INSERM U1048, Toulouse, France). This work was supported by grants from the French Government managed by the French National Research Agency (ANR) and under the program ‘Investissements d’Avenir’ with reference ANR-11-LABX-0021-01-LipSTIC Labex, INCa, ARC, Cancéropole Grand Ouest, Région Bretagne, Région Bourgogne, Rennes Métropole, Ligue Contre le Cancer (Comités d’Ille-et-Vilaine/du Morbihan/des Côtes d’Armor/du Maine et Loire et les comités du Doubs/de l'Yonne), Conseil Général d'Ille-et-Vilaine, project Membratox (Grant number 32508) and the European union (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Legembre.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edmond, V., Dufour, F., Poiroux, G. et al. Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility. Oncogene 34, 996–1005 (2015). https://doi.org/10.1038/onc.2014.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.55

This article is cited by

Search

Quick links