Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Diverse roles of STING-dependent signaling on the development of cancer

Subjects

Abstract

Stimulator of interferon genes (STING) is a cellular sensor that controls cytosolic DNA-activated innate immune signaling. We have previously demonstrated that STING-deficient mice are resistant to carcinogen-induced skin cancer, similar to myeloid differentiation primary response gene 88 (MyD88) deficient mice, since the production of STING-dependent DNA-damage-induced proinflammatory cytokines, that likely require MyD88 signaling to exert their growth-promoting activity, are prevented. In contrast, MyD88-deficient mice are sensitive to colitis-associated cancer (CAC), since selected cytokines generated following DNA-damage also activate repair pathways, which can help prevent tumor development. Here, we demonstrate that STING signaling facilitates wound repair processes and that analogous to MyD88-deficient mice, STING-deficient mice (SKO) are prone to CAC induced by DNA-damaging agents. SKO mice harboring tumors exhibited low levels of tumor-suppressive interleukin-22 binding protein (IL-22BP) compared to normal mice, a cytokine considered critical for preventing colon-related cancer. Our data indicate that STING constitutes a critical component of the host early response to intestinal damage and is essential for invigorating tissue repair pathways that may help prevent tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Goldszmid RS, Trinchieri G . The price of immunity. Nat Immunol 2012; 13: 932–938.

    Article  CAS  Google Scholar 

  2. Nowarski R, Gagliani N, Huber S, Flavell RA . Innate immune cells in inflammation and cancer. Cancer Immunol Res 2013; 1: 77–84.

    Article  CAS  Google Scholar 

  3. Cataisson C, Salcedo R, Hakim S, Moffitt BA, Wright L, Yi M et al. IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. J Exp Med 2012; 209: 1689–1702.

    Article  CAS  Google Scholar 

  4. Ishikawa H, Ma Z, Barber GN . STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009; 461: 788–792.

    Article  CAS  Google Scholar 

  5. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 2011; 478: 515–518.

    Article  CAS  Google Scholar 

  6. Cai X, Chiu YH, Chen ZJ . The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 2014; 54: 289–296.

    Article  CAS  Google Scholar 

  7. Ahn J, Ruiz P, Barber GN . Intrinsic self-DNA triggers inflammatory disease dependent on STING. J Immunol 2014; 193: 4634–4642.

    Article  CAS  Google Scholar 

  8. Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr, Barber GN et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 2012; 36: 120–131.

    Article  CAS  Google Scholar 

  9. Ahn J, Xia T, Konno H, Konno K, Ruiz P, Barber GN . Inflammation-driven carcinogenesis is mediated through STING. Nat Commun 2014; 5: 5166.

    Article  CAS  Google Scholar 

  10. Salcedo R, Cataisson C, Hasan U, Yuspa SH, Trinchieri G . MyD88 and its divergent Toll in carcinogenesis. Trends Immunol 2013; 34: 379–389.

    Article  CAS  Google Scholar 

  11. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog 2011; 10: 9.

    Article  CAS  Google Scholar 

  12. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 2012; 491: 259–263.

    Article  CAS  Google Scholar 

  13. Ishikawa H, Barber GN . STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455: 674–678.

    Article  CAS  Google Scholar 

  14. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014; 371: 507–518.

    Article  CAS  Google Scholar 

  15. Ahn J, Gutman D, Saijo S, Barber GN . STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci USA 2012; 109: 19386–19391.

    Article  CAS  Google Scholar 

  16. Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun 2011; 12: 270–279.

    Article  CAS  Google Scholar 

  17. Jacoby RF, Llor X, Teng BB, Davidson NO, Brasitus TA . Mutations in the K-ras oncogene induced by 1,2-dimethylhydrazine in preneoplastic and neoplastic rat colonic mucosa. J Clin Invest 1991; 87: 624–630.

    Article  CAS  Google Scholar 

  18. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  Google Scholar 

  19. Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 2008; 105: 652–656.

    Article  CAS  Google Scholar 

  20. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 2010; 207: 1625–1636.

    Article  CAS  Google Scholar 

  21. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA . Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008; 29: 947–957.

    Article  CAS  Google Scholar 

  22. Rakoff-Nahoum S, Medzhitov R . Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 2007; 317: 124–127.

    Article  CAS  Google Scholar 

  23. Zhu Q, Man SM, Gurung P, Liu Z, Vogel P, Lamkanfi M et al. Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J Immunol 2014; 193: 4779–4782.

    Article  CAS  Google Scholar 

  24. Fukata M, Vamadevan AS, Abreu MT . Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 2009; 21: 242–253.

    Article  CAS  Google Scholar 

  25. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 2010; 207: 1045–1056.

    Article  CAS  Google Scholar 

  26. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145: 745–757.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Masayuki Fukata for micro-endoscopy analysis; Ms Delia Gutman and Ms Auristela Rivera for mice breeding; Dr Tianli Xia for helping with confocal analysis; Dr Biju Issac of the Sylvester Comprehensive Cancer Center Bioinformatics Core Facility for Gene expression array analysis; Dr Phillp Ruiz and Ms Dayami Hernandez for helping with immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G N Barber.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J., Konno, H. & Barber, G. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene 34, 5302–5308 (2015). https://doi.org/10.1038/onc.2014.457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.457

This article is cited by

Search

Quick links