Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells

Abstract

An inverted pH gradient across the cell membranes is a typical feature of malignant cancer cells that are characterized by extracellular acidosis and cytosol alkalization. These dysregulations are able to create a unique milieu that favors tumor progression, metastasis and chemo/immune-resistance traits of solid tumors. A key event mediating tumor cell pH alterations is an aberrant activation of ion channels and proton pumps such as (H+)-vacuolar-ATPase (V-ATPase). TM9SF4 is a poorly characterized transmembrane protein that we have recently shown to be related to cannibal behavior of metastatic melanoma cells. Here, we demonstrate that TM9SF4 represents a novel V-ATPase-associated protein involved in V-ATPase activation. We have observed in HCT116 and SW480 colon cancer cell lines that TM9SF4 interacts with the ATP6V1H subunit of the V-ATPase V1 sector. Suppression of TM9SF4 with small interfering RNAs strongly reduces assembly of V-ATPase V0/V1 sectors, thus reversing tumor pH gradient with a decrease of cytosolic pH, alkalization of intracellular vesicles and a reduction of extracellular acidity. Such effects are associated with a significant inhibition of the invasive behavior of colon cancer cells and with an increased sensitivity to the cytotoxic effects of 5-fluorouracil. Our study shows for the first time the important role of TM9SF4 in the aberrant constitutive activation of the V-ATPase, and the development of a malignant phenotype, supporting the potential use of TM9SF4 as a target for future anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. De Souza AC, Justo GZ, de Araújo DR, Cavagis AD . Defining the molecular basis of tumor metabolism: a continuing challenge since Warburg's discovery. Cell Physiol Biochem 2011; 28: 771–792.

    Article  PubMed  Google Scholar 

  2. De Milito A, Marino ML, Fais S . A rationale for the use of proton pump inhibitors as antineoplastic agents. Curr Pharm Des 2012; 18: 1395–1406.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Yang JM . Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol Ther 2013; 14: 81–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simon S, Roy D, Schindler M . Intracellular pH and the control of multidrug resistance. Proc Natl Acad Sci USA 1994; 91: 1128–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raghunand N, Gillies RJ . pH and drug resistance in tumors. Drug Resist Updat 2000; 3: 39–47.

    Article  CAS  PubMed  Google Scholar 

  6. Rofstad EK, Mathiesen B, Kindem K, Galappathi K . Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 2006; 66: 6699–6707.

    Article  CAS  PubMed  Google Scholar 

  7. Fais S, De Milito A, You H, Qin W . Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res 2007; 67: 10627–10630.

    Article  CAS  PubMed  Google Scholar 

  8. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 2013; 73: 1524–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daniel C, Bell C, Burton C, Harguindey S, Reshkin SJ, Rauch C . The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochim Biophys Acta 2013; 1832: 606–617.

    Article  CAS  PubMed  Google Scholar 

  10. Nishi T, Forgac M . The vacuolar (H+)-ATPases-nature's most versatile proton pumps. Nat Rev Mol Cell Biol 2002; 3: 94–103.

    Article  CAS  PubMed  Google Scholar 

  11. Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 2006; 8: 124–136.

    Article  CAS  PubMed  Google Scholar 

  12. Qi J, Wang Y, Forgac M . The vacuolar (H+)-ATPase: subunit arrangement and in vivo regulation. J Bioenerg Biomembr 2007; 39: 423–426.

    Article  CAS  PubMed  Google Scholar 

  13. Marshansky V, Rubinstein JL, Grüber G . Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim Biophys Acta 2014; 1837: 857–879.

    Article  CAS  PubMed  Google Scholar 

  14. Sun-Wada GH, Wada Y . Vacuolar-type proton pump ATPases: acidification and pathological relationships. Histol Histopathol 2013; 28: 805–815.

    CAS  PubMed  Google Scholar 

  15. Fogarty FM, O'Keeffe J, Zhadanov A, Papkovsky D, Ayllon V, O'Connor R . HRG-1 enhances cancer cell invasive potential and couples glucose metabolism to cytosolic/extracellular pH gradient regulation by the vacuolar-H(+) ATPase. Oncogene 2014; 33: 4653–4663.

    Article  CAS  PubMed  Google Scholar 

  16. Sennoune SR, Bakunts K, Martínez GM, Chua-Tuan JL, Kebir Y, Attaya MN et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 2004; 286: C1443–C1452.

    Article  CAS  PubMed  Google Scholar 

  17. Supino R, Scovassi AI, Croce AC, Dal Bo L, Favini E, Corbelli A et al. Biological effects of a new vacuolar-H,-ATPase inhibitor in colon carcinoma cell lines. Ann NY Acad Sci 2009; 1171: 606–616.

    Article  CAS  PubMed  Google Scholar 

  18. Perrin J, Mortier M, Jacomin AC, Viargues P, Thevenon D, Fauvarque MO . The Nonaspanins TM9SF2 and TM9SF4 regulate the plasma membrane localization and signalling activity of the peptidoglycan recognition protein PGRP-LC in Drosophila. J Innate Immun 2014; 7: 37–46.

    Article  PubMed  PubMed Central  Google Scholar 

  19. He P, Peng Z, Luo Y, Wang L, Yu P, Deng W et al. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy 2009; 5: 52–60.

    Article  CAS  PubMed  Google Scholar 

  20. Zaravinos A, Lambrou GI, Boulalas I, Delakas D, Spandidos DA . Identification of common differentially expressed genes in urinary bladder cancer. PLoS One 2011; 6: e18135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang H, Jeung HC, Jung JJ, Kim TS, Rha SY, Chung HC . Identification of genes associated with chemosensitivity to SAHA/taxane combination treatment in taxane-resistant breast cancer cells. Breast Cancer Res Treat 2011; 125: 55–63.

    Article  CAS  PubMed  Google Scholar 

  22. Oo HZ, Sentani K, Sakamoto N, Anami K, Naito Y, Oshima T et al. Identification of novel transmembrane proteins in scirrhous-type gastric cancer by the Escherichia coli ampicillin secretion trap (CAST) method: TM9SF3 participates in tumor invasion and serves as a prognostic factor. Pathobiology 2014; 81: 138–148.

    Article  CAS  PubMed  Google Scholar 

  23. Lozupone F, Perdicchio M, Brambilla D, Borghi M, Meschini S, Barca S et al. The human homologue of Dictyosteliumdiscoideum phg1A is expressed by human metastatic melanoma cells. EMBO Rep 2009; 10: 1348–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mackinnon RN, Selan C, Wall M, Baker E, Nandurkar H, Campbell LJ . The paradox of 20q11.21 amplification in a subset of cases of myeloid malignancy with chromosome 20 deletion. Genes Chromosomes Cancer 2010; 49: 998–1013.

    Article  CAS  PubMed  Google Scholar 

  25. von Heijne G . Membrane protein structure prediction, hydrophobicity analysis and the positive-inside rule. J MolBiol 1992; 225: 487–494.

    Article  CAS  Google Scholar 

  26. Chen M, Huang SL, Zhang XQ, Zhang B, Zhu H, Yang VW et al. Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/mTOR/HIF-1α/P-gp and MRP1 signaling pathway in vitro and in vivo. J Cell Biochem 2012; 113: 2474–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Diz PG, Rey JM, García-García A . Multidrug resistance in oral squamous cell carcinoma: the role of vacuolar ATPases. Cancer Lett 2010; 295: 135–143.

    Article  PubMed  Google Scholar 

  28. Michel V, Licon-Munoz Y, Trujillo K, Bisoffi M, Parra KJ . Inhibitors of vacuolar ATPase proton pumps inhibit human prostate cancer cell invasion and prostate-specific antigen expression and secretion. Int J Cancer 2013; 132: E1–10.

    Article  CAS  PubMed  Google Scholar 

  29. Graham RM, Thompson JW, Webster KA . Inhibition of the vacuolar ATPase induces Bnip3-dependent death of cancer cells and a reduction in tumor burden and metastasis. Oncotarget 2014; 5: 1162–1173.

    Article  PubMed  Google Scholar 

  30. Wiedmann RM, von Schwarzenberg K, Palamidessi A, Schreiner L, Kubisch R, Liebl J et al. The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1. Cancer Res 2012; 72: 5976–5987.

    Article  CAS  PubMed  Google Scholar 

  31. Capecci J, Forgac M . The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J Biol Chem 2013; 288: 32731–32741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parks SK, Chiche J, Pouysségur J . Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 2013; 9: 611–623.

    Article  Google Scholar 

  33. Parks SK, Chiche J, Pouyssegur J . pH control mechanisms of tumor survival and growth. J Cell Physiol 2011; 226: 299–308.

    Article  CAS  PubMed  Google Scholar 

  34. Murakami T, Shibuya I, Ise T, Chen ZS, Akiyama S, Nakagawa M et al. Elevated expression of vacuolar proton pump genes and cellular pH in cisplatin resistance. Int J Cancer 2001; 93: 869–874.

    Article  CAS  PubMed  Google Scholar 

  35. Niikura K . Vacuolar ATPase as a drug discovery target. Drug News Perspect 2006; 19: 139–144.

    Article  CAS  PubMed  Google Scholar 

  36. De Milito A, Fais S . Tumor acidity, chemoresistance and proton pump inhibitors. Fut Oncol 2005; 1: 779–786.

    Article  CAS  Google Scholar 

  37. You H, Jin J, Shu H, Yu B, De Milito A, Lozupone F et al. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett 2009; 280: 110–119.

    Article  CAS  PubMed  Google Scholar 

  38. Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst 2004; 96: 1702–1713.

    Article  CAS  PubMed  Google Scholar 

  39. De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A et al. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 2010; 127: 207–219.

    Article  CAS  PubMed  Google Scholar 

  40. Spugnini EP, Baldi A, Buglioni S, Carocci F, de Bazzichini GM, Betti G et al. Lansoprazole as a rescue agent in chemoresistant tumors: a phase I/II study in companion animals with spontaneously occurring tumors. J Transl Med 2011; 9: 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gocheva V, Joyce JA . Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007; 6: 60–64.

    Article  CAS  PubMed  Google Scholar 

  42. Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG et al. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 2009; 284: 16400–16408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung C, Mader CC, Schmitz JC, Atladottir J, Fitchev P, Cornwell ML et al. The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer. Lab Invest 2011; 91: 732–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishisho T, Hata K, Nakanishi M, Morita Y, Sun-Wada GH, Wada Y et al. The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res 2011; 9: 845–855.

    Article  CAS  PubMed  Google Scholar 

  45. Lu X, Qin W, Li J, Tan N, Pan D, Zhang H et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 2005; 65: 6843–6849.

    Article  CAS  PubMed  Google Scholar 

  46. Avnet S, Di Pompo G, Lemma S, Salerno M, Perut F, Bonuccelli G . V-ATPase is a candidate therapeutic target for Ewing sarcoma. Biochim Biophys Acta 2013; 18328: 1105–1116.

    Article  Google Scholar 

  47. Xu J, Xie R, Liu X, Wen G, Jin H, Yu Z et al. Expression and functional role of vacuolar H(+)-ATPase in human hepatocellular carcinoma. Carcinogenesis 2012; 33: 2432–2440.

    Article  CAS  PubMed  Google Scholar 

  48. Ohkuma S, Poole B . Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 1978; 75: 3327–3331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas JA, Buchsbaum RN, Zimniak A, Racker E . Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 1979; 18: 2210–2218.

    Article  CAS  PubMed  Google Scholar 

  50. Seo JT, Steward MC, Larcombe-McDouall JB, Cook LJ, Case RM . Continuous fluorometric measurement of intracellular pH and Ca2+ in perfused salivary gland and pancreas. Pflugers Arch 1994; 426: 75–82.

    Article  CAS  PubMed  Google Scholar 

  51. Stryer L . Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 1978; 47: 819–846.

    Article  CAS  PubMed  Google Scholar 

  52. Riemann D, Tcherkes A, Hansen GH, Wulfaenger J, Blosz T, Danielsen EM . Functional co-localization of monocyticaminopeptidase N/CD13 with the Fc gamma receptors CD32 and CD64. Biochem Biophys Res Commun 2005; 331: 1408–1412.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Angelo De Milito for helpful discussion, Pasqualina Leone for her contribution in plasmid cloning and Dr Tonino Sofia for his suggestions. This study was supported by AIRC Associazione Italiana per la Ricerca sul Cancro. Airc Grant '10602' and ‘IG 11505n’. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author Contributions

FL conceived the study, designed and supervised the experiments; MB, FM, GV, SF and AC provided critical advice and contributed to manuscript revisions; MB, FM, EI, TA, PM, SM and RM performed experiments; AC performed quantitative reverse transcription–PCR experiments; TA performed statistical analyses; and FL wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Lozupone.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozupone, F., Borghi, M., Marzoli, F. et al. TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells. Oncogene 34, 5163–5174 (2015). https://doi.org/10.1038/onc.2014.437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.437

This article is cited by

Search

Quick links