Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma

Subjects

Abstract

Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor that has a high propensity for metastases. Through osteoblast-specific alteration of p53 status, we developed a genetically engineered mouse model of localized and metastatic OS to gain an understanding into the molecular pathogenesis of OS. Microarray analysis of both localized tumors and metastatic tumors identified the downregulation of the naked cuticle homolog 2 (NKD2) gene, a negative regulator of Wnt signaling. Overexpression of NKD2 in metastatic human and mouse OS cells significantly decreases cell proliferation, migration and invasion ability in vitro and drastically diminishes OS tumor growth and metastasis in vivo, whereas downregulation enhances migratory and invasive potential. Evaluation of NKD2-overexpressing tumors revealed upregulation of tumor-suppressor genes and downregulation of molecules involved in blood vessel formation and cell migration. Furthermore, assessment of primary human OS revealed downregulation of NKD2 in metastatic and recurrent OS. Finally, we provide biological evidence that use of small-molecule inhibitors targeting the Wnt pathway can have therapeutic efficacy in decreasing metastatic properties in OS. Our studies provide compelling evidence that downregulation of NKD2 expression and alterations in associated regulated pathways have a significant role in driving OS tumor growth and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ottaviani G, Jaffe N . The epidemiology of osteosarcoma. Cancer Treat Res 2009; 152: 3–13.

    Article  PubMed  Google Scholar 

  2. Wang LL . Biology of osteogenic sarcoma. Cancer J 2005; 11: 294–305.

    Article  CAS  PubMed  Google Scholar 

  3. Bacci G, Briccoli A, Rocca M, Ferrari S, Donati D, Longhi A et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol 2003; 14: 1126–1134.

    Article  CAS  PubMed  Google Scholar 

  4. Kager L, Zoubek A, Potschger U, Kastner U, Flege S, Kempf-Bielack B et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol 2003; 21: 2011–2018.

    Article  PubMed  Google Scholar 

  5. Meyers PA, Heller G, Healey JH, Huvos A, Applewhite A, Sun M et al. Osteogenic sarcoma with clinically detectable metastasis at initial presentation. J Clin Oncol 1993; 11: 449–453.

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 2014; 7: 104–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kansara M, Thomas DM . Molecular pathogenesis of osteosarcoma. DNA Cell Biol 2007; 26: 1–18.

    Article  CAS  PubMed  Google Scholar 

  8. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622–629.

    Article  CAS  PubMed  Google Scholar 

  9. Brosh R, Rotter V . When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701–713.

    Article  CAS  PubMed  Google Scholar 

  10. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr ., Butel JS et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  11. Donehower LA, Lozano G . 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 2009; 9: 831–841.

    Article  CAS  PubMed  Google Scholar 

  12. Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK et al. High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 2000; 97: 4174–4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  14. Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X et al. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 2007; 9: R57.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lauvrak SU, Munthe E, Kresse SH, Stratford EW, Namlos HM, Meza-Zepeda LA et al. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Br J Cancer 2013; 109: 2228–2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baranwal S, Alahari SK . miRNA control of tumor cell invasion and metastasis. Int J Cancer 2009; 126: 1283–1290.

    Google Scholar 

  17. Luu HH, Kang Q, Park JK, Si W, Luo Q, Jiang W et al. An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin Exp Metastasis 2005; 22: 319–329.

    Article  PubMed  Google Scholar 

  18. Edamura K, Nasu Y, Takaishi M, Kobayashi T, Abarzua F, Sakaguchi M et al. Adenovirus-mediated REIC/Dkk-3 gene transfer inhibits tumor growth and metastasis in an orthotopic prostate cancer model. Cancer Gene Ther 2007; 14: 765–772.

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh SY, Hsieh PS, Chiu CT, Chen WY . Dickkopf-3/REIC functions as a suppressor gene of tumor growth. Oncogene 2004; 23: 9183–9189.

    Article  CAS  PubMed  Google Scholar 

  20. Mizobuchi Y, Matsuzaki K, Kuwayama K, Kitazato K, Mure H, Kageji T et al. REIC/Dkk-3 induces cell death in human malignant glioma. Neuro-oncol 2008; 10: 244–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Veeck J, Bektas N, Hartmann A, Kristiansen G, Heindrichs U, Knuchel R et al. Wnt signalling in human breast cancer: expression of the putative Wnt inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter hypermethylation in mammary tumours. Breast Cancer Res 2008; 10: R82.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoang BH, Kubo T, Healey JH, Yang R, Nathan SS, Kolb EA et al. Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 2004; 64: 2734–2739.

    Article  CAS  PubMed  Google Scholar 

  23. Miretti S, Roato I, Taulli R, Ponzetto C, Cilli M, Olivero M et al. A mouse model of pulmonary metastasis from spontaneous osteosarcoma monitored in vivo by Luciferase imaging. PLoS ONE 2008; 3: e1828.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hong SH, Briggs J, Newman R, Hoffman K, Mendoza A, LeRoith D et al. Murine osteosarcoma primary tumour growth and metastatic progression is maintained after marked suppression of serum insulin-like growth factor I. Int J Cancer 2009; 124: 2042–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu T, Li C, Cao Z, Van Raay TJ, Smith JG, Willert K et al. Myristoylated Naked2 antagonizes Wnt-beta-catenin activity by degrading Dishevelled-1 at the plasma membrane. J Biol Chem 2010; 285: 13561–13568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rousset R, Mack JA, Wharton KA Jr ., Axelrod JD, Cadigan KM, Fish MP et al. Naked cuticle targets dishevelled to antagonize Wnt signal transduction. Genes Dev 2001; 15: 658–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan D, Wallingford JB, Sun TQ, Nelson AM, Sakanaka C, Reinhard C et al. Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc Natl Acad Sci USA 2001; 98: 3802–3807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R et al. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 2007; 25: 964–971.

    Article  CAS  PubMed  Google Scholar 

  29. Gotze S, Wolter M, Reifenberger G, Muller O, Sievers S . Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer 2010; 126: 2584–2593.

    PubMed  Google Scholar 

  30. Nguyen DX, Massague J . Genetic determinants of cancer metastasis. Nat Rev 2007; 8: 341–352.

    Article  CAS  Google Scholar 

  31. Baron R, Rawadi G . Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 2007; 5: 73–80.

    Article  PubMed  Google Scholar 

  32. Johnson AS, Couto CG, Weghorst CM . Mutation of the p53 tumor suppressor gene in spontaneously occurring osteosarcomas of the dog. Carcinogenesis 1998; 19: 213–217.

    Article  CAS  PubMed  Google Scholar 

  33. Flores RJ, Li Y, Yu A, Shen J, Rao PH, Lau SS et al. A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC Syst Biol 2012; 6: 50.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brennecke P, Arlt MJ, Campanile C, Husmann K, Gvozdenovic A, Apuzzo T et al. CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clin Exp Metastasis 2014; 31: 339–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Husmann K, Arlt MJ, Muff R, Langsam B, Bertz J, Born W et al. Matrix Metalloproteinase 1 promotes tumor formation and lung metastasis in an intratibial injection osteosarcoma mouse model. Biochim Biophys Acta 2013; 1832: 347–354.

    Article  CAS  PubMed  Google Scholar 

  36. Kimura R, Ishikawa C, Rokkaku T, Janknecht R, Mori N . Phosphorylated c-Jun and Fra-1 induce matrix metalloproteinase-1 and thereby regulate invasion activity of 143B osteosarcoma cells. Biochim Biophys Acta 2011; 1813: 1543–1553.

    Article  CAS  PubMed  Google Scholar 

  37. Muff R, Ram Kumar RM, Botter SM, Born W, Fuchs B . Genes regulated in metastatic osteosarcoma: evaluation by microarray analysis in four human and two mouse cell line systems. Sarcoma 2012; 2012: 937506.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol 2008; 294: G39–G49.

    Article  CAS  Google Scholar 

  39. Kanda M, Nomoto S, Okamura Y, Hayashi M, Hishida M, Fujii T et al. Promoter hypermethylation of fibulin 1 gene is associated with tumor progression in hepatocellular carcinoma. Mol Carcinog 2011; 50: 571–579.

    Article  CAS  PubMed  Google Scholar 

  40. Wlazlinski A, Engers R, Hoffmann MJ, Hader C, Jung V, Muller M et al. Downregulation of several fibulin genes in prostate cancer. Prostate 2007; 67: 1770–1780.

    Article  CAS  PubMed  Google Scholar 

  41. Li C, Franklin JL, Graves-Deal R, Jerome WG, Cao Z, Coffey RJ . Myristoylated Naked2 escorts transforming growth factor alpha to the basolateral plasma membrane of polarized epithelial cells. Proc Natl Acad Sci USA 2004; 101: 5571–5576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li C, Hao M, Cao Z, Ding W, Graves-Deal R, Hu J et al. Naked2 acts as a cargo recognition and targeting protein to ensure proper delivery and fusion of TGF-alpha containing exocytic vesicles at the lower lateral membrane of polarized MDCK cells. Mol Biol Cell 2007; 18: 3081–3093.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu F, Woitge HW, Braut A, Kronenberg MS, Lichtler AC, Mina M et al. Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol 2004; 48: 645–653.

    Article  CAS  PubMed  Google Scholar 

  44. Dumble ML, Donehower LA, Lu X . Generation and characterization of p53 mutant mice. Methods Mol Biol 2003; 234: 29–49.

    CAS  PubMed  Google Scholar 

  45. Schneider CA, Rasband WS, Eliceiri KW . NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483: 589–593.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yiqun Zhang for technical assistance and Dr Neha Parikh for her assistance with figure layout and design. This work was supported by The Cancer Prevention and Research Institute of Texas (to SZ, T-KM, CL, PR, JH, LK, CJC, LAD, JTY), WWW.W Foundation, Inc. (QuadW) (to JTY), The St Baldrick’s Foundation (to JTY), the Sarcoma Foundation of America (to LAD), NIH R01 CA123238 (to AMCB) and NCI/NIH grant P30 CA125123 (to CJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J T Yustein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Kurenbekova, L., Gao, Y. et al. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma. Oncogene 34, 5069–5079 (2015). https://doi.org/10.1038/onc.2014.429

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.429

This article is cited by

Search

Quick links