Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1

Abstract

Although increasing evidence indicated that the deregulation of microRNAs (miRNAs) contributes to tumorigenesis and invasion, little is known about the role of miR-637 in human gliomas. In the present study, we found that the expression level of miR-637 was significantly reduced in clinical glioma tissues compared with normal brain tissues. Moreover, we revealed that the introduction of miR-637 dramatically suppressed glioma cell growth, migration and invasion in vitro and in vivo. Further studies revealed that Akt1 is a direct target gene of miR-637. Silencing of Akt1 inhibited the growth and invasion of glioma cells by decreasing phosphorylated Akt, β-catenin, phosphorylated Foxo1 and Cyclin D1 and inducing the expression of Foxo1, which was consistent with the effect of miR-637 overexpression. Suppressed expression of miR-637 and increased Akt1 protein levels were correlated with unfavorable progression and poor prognosis, respectively, and a negative relationship between the miR-637 expression and Akt1 protein levels was observed in gliomas. Our findings provide new insights into the role of miR-637 in the development of gliomas, and implicate the potential application of miR-637 in cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001; 15: 1311–1333.

    Article  CAS  PubMed  Google Scholar 

  2. Emdad L, Dent P, Sarkar D, Fisher PB . Future approaches for the therapy of malignant glioma: targeting genes mediating invasion. Future Oncol 2012; 8: 343–346.

    Article  CAS  PubMed  Google Scholar 

  3. Lefranc F, Brotchi J, Kiss R . Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 2005; 23: 2411–2422.

    Article  CAS  PubMed  Google Scholar 

  4. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459–466.

    Article  CAS  PubMed  Google Scholar 

  5. Jansen M, Yip S, Louis DN . Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol 2010; 9: 717–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hobert O . miRNAs play a tune. Cell 2007; 131: 22–24.

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quintavalle C, Garofalo M, Zanca C, Romano G, Iaboni M, del Basso De Caro M et al. miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene 2012; 31: 858–868.

    Article  CAS  PubMed  Google Scholar 

  9. Yin D, Ogawa S, Kawamata N, Leiter A, Ham M, Li D et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene 2013; 32: 1155–1163.

    Article  CAS  PubMed  Google Scholar 

  10. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene 2011; 30: 806–821.

    Article  CAS  PubMed  Google Scholar 

  12. Wu S, Lin Y, Xu D, Chen J, Shu M, Zhou Y et al. MiR-135a functions as a selective killer of malignant glioma. Oncogene 2012; 31: 3866–3874.

    Article  CAS  PubMed  Google Scholar 

  13. Dontula R, Dinasarapu A, Chetty C, Pannuru P, Herbert E, Ozer H et al. MicroRNA 203 modulates glioma cell migration via Robo1/ERK/MMP-9 signaling. Genes Cancer 2013; 4: 285–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Besse A, Sana J, Fadrus P, Slaby O . MicroRNAs involved in chemo- and radioresistance of high-grade gliomas. Tumour Biol 2013; 34: 1969–1978.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang B, Pan X, Cobb GP, Anderson TA . microRNAs as oncogenes and tumor suppressors. Dev Biol 2007; 302: 1–12.

    Article  CAS  PubMed  Google Scholar 

  16. Nan Y, Han L, Zhang A, Wang G, Jia Z, Yang Y et al. MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 2010; 1359: 14–21.

    Article  CAS  PubMed  Google Scholar 

  17. Guo P, Lan J, Ge J, Nie Q, Mao Q, Qiu Y . miR-708 acts as a tumor suppressor in human glioblastoma cells. Oncol Rep 2013; 30: 870–876.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang JF, He ML, Fu WM, Wang H, Chen LZ, Zhu X et al. Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling. Hepatology 2011; 54: 2137–2148.

    Article  CAS  PubMed  Google Scholar 

  19. Leivonen SK, Sahlberg KK, Makela R, Due EU, Kallioniemi O, Borresen-Dale AL et al. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol 2013; 8: 93–104.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stokowy T, Wojtas B, Fujarewicz K, Jarzab B, Eszlinger M, Paschke R . miRNAs with the potential to distinguish follicular thyroid carcinomas from benign follicular thyroid tumors: results of a meta-analysis. Horm Metab Res 2014; 46: 171–180.

    Article  CAS  PubMed  Google Scholar 

  21. Li GQ, Zhang Y, Liu D, Qian YY, Zhang H, Guo SY et al. PI3 kinase/Akt/HIF-1alpha pathway is associated with hypoxia-induced epithelial-mesenchymal transition in fibroblast-like synoviocytes of rheumatoid arthritis. Mol Cell Biochem 2013; 372: 221–231.

    Article  CAS  PubMed  Google Scholar 

  22. Wlodarski P, Grajkowska W, Lojek M, Rainko K, Jozwiak J . Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathol 2006; 44: 214–220.

    CAS  PubMed  Google Scholar 

  23. Schlegel J, Piontek G, Budde B, Neff F, Kraus A . The Akt/protein kinase B-dependent anti-apoptotic pathway and the mitogen-activated protein kinase cascade are alternatively activated in human glioblastoma multiforme. Cancer Lett 2000; 158: 103–108.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Wang X, Zhang J, Sun G, Luo H, Kang C et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neurooncol 2012; 106: 217–224.

    Article  PubMed  Google Scholar 

  25. Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 2002; 22: 7842–7852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai N, Wang YD, Zheng PS . The microRNA-302-367 cluster suppresses the proliferation of cervical carcinoma cells through the novel target AKT1. RNA 2013; 19: 85–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pan SJ, Zhan SK, Pei BG, Sun QF, Bian LG, Sun BM . MicroRNA-149 inhibits proliferation and invasion of glioma cells via blockade of AKT1 signaling. Int J Immunopathol Pharmacol 2012; 25: 871–881.

    Article  CAS  PubMed  Google Scholar 

  28. Al-Harthi L . Wnt/beta-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol 2012; 7: 725–730.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim KH, Seol HJ, Kim EH, Rheey J, Jin HJ, Lee Y et al. Wnt/beta-catenin signaling is a key downstream mediator of MET signaling in glioblastoma stem cells. Neuro Oncol 2013; 15: 161–171.

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B et al. PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 2011; 121: 407–420.

    Article  CAS  PubMed  Google Scholar 

  31. Antonelli M, Massimino M, Morra I, Garre ML, Gardiman MP, Buttarelli FR et al. Expression of pERK and pAKT in pediatric high grade astrocytomas: correlation with YKL40 and prognostic significance. Neuropathology 2012; 32: 133–138.

    Article  PubMed  Google Scholar 

  32. Suzuki Y, Shirai K, Oka K, Mobaraki A, Yoshida Y, Noda SE et al. Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J Radiat Res 2010; 51: 343–348.

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Li L, Yang Z, Luo W, Li X, Yang H et al. Increased expression of MMP9 is correlated with poor prognosis of nasopharyngeal carcinoma. BMC Cancer 2010; 10: 270.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qi S, Song Y, Peng Y, Wang H, Long H, Yu X et al. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PLoS ONE 2012; 7: e38842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song Y, Luo Q, Long H, Hu Z, Que T, Zhang X et al. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma. Mol Cancer 2014; 13: 65.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Z, Li X, He X, Jiang Q, Xie S, Yu X et al. Decreased expression of updated NESG1 in nasopharyngeal carcinoma: its potential role and preliminarily functional mechanism. Int J Cancer 2011; 128: 2562–2571.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nature Science Fund of China (NO.81372692; http://www.nsfc.gov.cn), the Natural Science Fund of Guangdong Province (NO.S2013010014886; http://www.gdstc.gov.cn), the Medical Scientific Research Fund of Guangdong Province (NO.B2013238; http://www.medste.gd.cn), the Scientific Research Initiative Project Fund of Southern Medical University (NO.B1012032; http://www.fimmu.com), the President Fund of Nanfang Hospital (2011C007, 2012C011; http://www.nfyy.com), the Science Fund of the Affiliated Hospital of Luzhou Medical College (2013-60) and Science and Technology Project of Luzhou (3-S-48). The funders had no role in study design, data collection, data analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Zhang, W Fang or S Qi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Disclaimer

The funders had no role in study design, data collection, data analysis, decision to publish, or preparation of the manuscript.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Que, T., Song, Y., Liu, Z. et al. Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 34, 4952–4963 (2015). https://doi.org/10.1038/onc.2014.419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.419

This article is cited by

Search

Quick links