Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anoikis of colon carcinoma cells triggered by β-catenin loss can be enhanced by tumor necrosis factor receptor 1 antagonists

Subjects

Abstract

Detachment of non-malignant epithelial cells from the extracellular matrix causes their apoptosis, a phenomenon called anoikis. By contrast, carcinoma cells are anoikis-resistant, and this resistance is thought to be critical for tumor progression. Many oncogenes trigger not only anti- but also pr-apoptotic signals. The proapoptotic events represent an aspect of a phenomenon called oncogenic stress, which acts as a safeguard mechanism blocking tumor initiation. In cells that become malignant, oncogene-induced antiapoptotic signals outbalance the proapoptotic ones. It is now thought that treatments blocking the antiapoptotic events but preserving the proapoptotic signals can be particularly effective in killing tumor cells. Whether or not oncogenes induce any proanoikis signals that can be used for enhancing the efficiency of approaches aimed at triggering anoikis of cancer cells has never been explored. β-Catenin is a major oncoprotein that is often activated in colorectal cancer and promotes tumor progression via mechanisms that are understood only in part. We found here that β-catenin triggers both anti- and proanoikis signals in colon cancer cells. We observed that the antianoikis signals prevail and the cells become anoikis-resistant. We further established that one proanoikis signal in these cells is triggered by β-catenin-induced downregulation of an apoptosis inhibitor tumor necrosis factor receptor 1 (TNFR1) and subsequent reduction of the activity of a transcription factor NF-κB (nuclear factor-κB), a mediator of TNFR1 signaling. We also found that the effect of β-catenin on TNFR1 requires the presence of transcription factor TCF1, a β-catenin effector. We demonstrated that ablation of β-catenin in colon cancer cells triggers their anoikis and that this anoikis is enhanced even further if low TNFR1 or NF-κB activity is artificially preserved in the β-catenin-deprived cells. Thus, inhibition of TNFR1 or NF-κB activity can be expected to enhance the efficiency of approaches aimed at blocking β-catenin-driven anoikis resistance of colon carcinoma cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rak J, Mitsuhashi Y, Erdos V, Huang SN, Filmus J, Kerbel RS . Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by mutant c-H-ras oncogene expression. J Cell Biol 1995; 131: 1587–1598.

    Article  CAS  PubMed  Google Scholar 

  2. Frisch SM, Francis H . Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol 1994; 124: 619–626.

    Article  CAS  PubMed  Google Scholar 

  3. Ljubimov AV, Bartek J, Couchman JR, Kapuller LL, Veselov VV, Kovarik J et al. Distribution of individual components of basement membrane in human colon polyps and adenocarcinomas as revealed by monoclonal antibodies. Int J Cancer 1992; 50: 562–566.

    Article  CAS  PubMed  Google Scholar 

  4. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS . Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 2004; 430: 1034–1039.

    Article  CAS  PubMed  Google Scholar 

  5. Berezovskaya O, Schimmer AD, Glinskii AB, Pinilla C, Hoffman RM, Reed JC et al. Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Res 2005; 65: 2378–2386.

    Article  CAS  PubMed  Google Scholar 

  6. Freedman VH, Shin SI . Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 1974; 3: 355–359.

    Article  CAS  PubMed  Google Scholar 

  7. Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 2005; 7: 533–545.

    Article  CAS  PubMed  Google Scholar 

  8. Coll ML, Rosen K, Ladeda V, Filmus J . Increased Bcl-xL expression mediates v-Src-induced resistance to anoikis in intestinal epithelial cells. Oncogene 2002; 21: 2908–2913.

    Article  CAS  PubMed  Google Scholar 

  9. Rosen K, Coll ML, Li A, Filmus J . Transforming growth factor-alpha prevents detachment-induced inhibition of c-Src kinase activity, Bcl-XL down-regulation, and apoptosis of intestinal epithelial cells. J Biol Chem 2001; 276: 37273–37279.

    Article  CAS  PubMed  Google Scholar 

  10. Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J . Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997; 16: 2783–2793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orford K, Orford CC, Byers SW . Exogenous expression of beta-catenin regulates contact inhibition, anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest. J Cell Biol 1999; 146: 855–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX et al. The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 1999; 18: 7034–7045.

    Article  CAS  PubMed  Google Scholar 

  13. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE . EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 2004; 23: 1448–1456.

    Article  CAS  PubMed  Google Scholar 

  14. Rosen K, Rak J, Leung T, Dean NM, Kerbel RS, Filmus J . Activated Ras prevents downregulation of Bcl-X(L) triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J Cell Biol 2000; 149: 447–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosen K, Rak J, Jin J, Kerbel RS, Newman MJ, Filmus J . Downregulation of the pro-apoptotic protein Bak is required for the ras-induced transformation of intestinal epithelial cells. Curr Biol 1998; 8: 1331–1334.

    Article  CAS  PubMed  Google Scholar 

  16. Scotlandi K, Maini C, Manara MC, Benini S, Serra M, Cerisano V . Effectiveness of insulin-like growth factor I receptor antisense strategy against Ewing's sarcoma cells. Cancer Gene Ther 2002; 9: 296–307.

    Article  CAS  PubMed  Google Scholar 

  17. Frankel A, Rosen K, Filmus J, Kerbel RS . Induction of anoikis and suppression of human ovarian tumor growth in vivo by down-regulation of Bcl-X(L). Cancer Res 2001; 61: 4837–4841.

    CAS  PubMed  Google Scholar 

  18. Li H, Ray G, Yoo BH, Erdogan M, Rosen KV . Down-regulation of death-associated protein kinase-2 is required for beta-catenin-induced anoikis resistance of malignant epithelial cells. J Biol Chem 2009; 284: 2012–2022.

    Article  CAS  PubMed  Google Scholar 

  19. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE . CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells. Oncogene 2004; 23: 465–473.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang K, Sun J, Cheng J, Djeu JY, Wei S, Sebti S . Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis. Mol Cell Biol 2004; 24: 5565–5576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Derouet M, Wu X, May L, Hoon YB, Sasazuki T, Shirasawa S et al. Acquisition of anoikis resistance promotes the emergence of oncogenic K-ras mutations in colorectal cancer cells and stimulates their tumorigenicity in vivo. Neoplasia 2007; 9: 536–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Evan GI, Vousden KH . Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348.

    Article  CAS  PubMed  Google Scholar 

  23. Jacks T, Weinberg RA . Taking the study of cancer cell survival to a new dimension. Cell 2002; 111: 923–925.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma SV, Bell DW, Settleman J, Haber DA . Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–181.

    Article  CAS  PubMed  Google Scholar 

  25. Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 2008; 14: 458–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haigis KM, Sweet-Cordero A . New insights into oncogenic stress. Nat Genet 2011; 43: 177–178.

    Article  CAS  PubMed  Google Scholar 

  27. Joneson T, Bar-Sagi D . Suppression of Ras-induced apoptosis by the Rac GTPase. Mol Cell Biol 1999; 19: 5892–5901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma SV, Gajowniczek P, Way IP, Lee DY, Jiang J, Yuza Y et al. A common signaling cascade may underlie ‘addiction’ to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 2006; 10: 425–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giles RH, van Es JH, Clevers H . Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 2003; 1653: 1–24.

    CAS  PubMed  Google Scholar 

  30. Stein U, Arlt F, Walther W, Smith J, Waldman T, Harris ED et al. The metastasis-associated gene S100A4 is a novel target of beta-catenin/T-cell factor signaling in colon cancer. Gastroenterology 2006; 131: 1486–1500.

    Article  CAS  PubMed  Google Scholar 

  31. Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I et al. Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 2005; 115: 3166–3176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anastas JN, Moon RT . WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13: 11–26.

    Article  CAS  PubMed  Google Scholar 

  33. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275: 1787–1790.

    Article  CAS  PubMed  Google Scholar 

  34. Morin PJ, Vogelstein B, Kinzler KW . Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 1996; 93: 7950–7954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kohler EM, Chandra SH, Behrens J, Schneikert J . Beta-catenin degradation mediated by the CID domain of APC provides a model for the selection of APC mutations in colorectal, desmoid and duodenal tumours. Hum Mol Genet 2009; 18: 213–226.

    Article  CAS  PubMed  Google Scholar 

  36. Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A et al. APC mutations in sporadic colorectal tumors: a mutational ‘hotspot’ and interdependence of the ‘two hits’. Proc Natl Acad Sci USA 2000; 97: 3352–3357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P . Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cell Mol Life Sci 2010; 67: 1567–1579.

    Article  PubMed  Google Scholar 

  38. Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Shemer-Avni Y, Camonis JH et al. Self-association of the ‘death domains’ of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem 1995; 270: 387–391.

    Article  CAS  PubMed  Google Scholar 

  39. Lobito AA, Kimberley FC, Muppidi JR, Komarow H, Jackson AJ, Hull KM et al. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 2006; 108: 1320–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang Y, Woronicz JD, Liu W, Goeddel DV . Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999; 283: 543–546.

    Article  CAS  PubMed  Google Scholar 

  41. Decoster E, Vanhaesebroeck B, Vandenabeele P, Grooten J, Fiers W . Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J Biol Chem 1995; 270: 18473–18478.

    Article  CAS  PubMed  Google Scholar 

  42. Roose J, Huls G, van Beest M, Moerer P, van der HK, Goldschmeding R et al. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 1999; 285: 1923–1926.

    Article  CAS  PubMed  Google Scholar 

  43. Jamora C, DasGupta R, Kocieniewski P, Fuchs E . Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003; 422: 317–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lei Q, Jeong Y, Misra K, Li S, Zelman AK, Epstein DJ et al. Wnt signaling inhibitors regulate the transcriptional response to morphogenetic Shh-Gli signaling in the neural tube. Dev Cell 2006; 11: 325–337.

    Article  CAS  PubMed  Google Scholar 

  45. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002; 22: 1172–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kemper O, Wallach D . Cloning and partial characterization of the promoter for the human p55 tumor necrosis factor (TNF) receptor. Gene 1993; 134: 209–216.

    Article  CAS  PubMed  Google Scholar 

  47. Wajant H, Pfizenmaier K, Scheurich P . Tumor necrosis factor signaling. Cell Death Differ 2003; 10: 45–65.

    Article  CAS  PubMed  Google Scholar 

  48. Rosen K, Shi W, Calabretta B, Filmus J . Cell detachment triggers p38 mitogen-activated protein kinase-dependent overexpression of Fas ligand. A novel mechanism of anoikis of intestinal epithelial cells. J Biol Chem 2002; 277: 46123–46130.

    Article  CAS  PubMed  Google Scholar 

  49. Anson M, Crain-Denoyelle AM, Baud V, Chereau F, Gougelet A, Terris B et al. Oncogenic beta-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice. J Clin Invest 2012; 122: 586–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yun K, So JS, Jash A, Im SH . Lymphoid enhancer binding factor 1 regulates transcription through gene looping. J Immunol 2009; 183: 5129–5137.

    Article  CAS  PubMed  Google Scholar 

  51. Liu Z, Li H, Wu X, Yoo BH, Yan SR, Stadnyk AW et al. Detachment-induced upregulation of XIAP and cIAP2 delays anoikis of intestinal epithelial cells. Oncogene 2006; 25: 7680–7690.

    Article  CAS  PubMed  Google Scholar 

  52. Au PY, Martin N, Chau H, Moemeni B, Chia M, Liu FF et al. The oncogene PDGF-B provides a key switch from cell death to survival induced by TNF. Oncogene 2005; 24: 3196–3205.

    Article  PubMed  Google Scholar 

  53. Liu YC, Chen SC, Chang C, Leu CM, Hu CP . Platelet-derived growth factor is an autocrine stimulator for the growth and survival of human esophageal carcinoma cell lines. Exp Cell Res 1996; 228: 206–211.

    Article  CAS  PubMed  Google Scholar 

  54. Kitamura T, Sekimata M, Kikuchi S, Homma Y . Involvement of poly(ADP-ribose) polymerase 1 in ERBB2 expression in rheumatoid synovial cells. Am J Physiol Cell Physiol 2005; 289: 82–88.

    Article  Google Scholar 

  55. Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ et al. ErbB2 requires integrin alpha5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 2010; 123: 1373–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT . Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol 1996; 148: 1661–1670.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim HR, Lin HM, Biliran H, Raz A . Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res 1999; 59: 4148–4154.

    CAS  PubMed  Google Scholar 

  58. Tulchinsky E, Prokhortchouk E, Georgiev G, Lukanidin E . A kappaB-related binding site is an integral part of the mts1 gene composite enhancer element located in the first intron of the gene. J Biol Chem 1997; 272: 4828–4835.

    Article  CAS  PubMed  Google Scholar 

  59. Mahon PC, Baril P, Bhakta V, Chelala C, Caulee K, Harada T et al. S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res 2007; 67: 6786–6795.

    Article  CAS  PubMed  Google Scholar 

  60. Brasse-Lagnel C, Lavoinne A, Loeber D, Fairand A, Bole-Feysot C, Deniel N et al. Glutamine and interleukin-1beta interact at the level of Sp1 and nuclear factor-kappaB to regulate argininosuccinate synthetase gene expression. FEBS J 2007; 274: 5250–5262.

    Article  CAS  PubMed  Google Scholar 

  61. Delage B, Luong P, Maharaj L, O'Riain C, Syed N, Crook T et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis 2012; 3: e342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaltschmidt B, Ndiaye D, Korte M, Pothion S, Arbibe L, Prullage M et al. NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol Cell Biol 2006; 26: 2936–2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 1999; 3: 413–422.

    Article  CAS  PubMed  Google Scholar 

  64. Jobin C, Panja A, Hellerbrand C, Iimuro Y, Didonato J, Brenner DA et al. Inhibition of proinflammatory molecule production by adenovirus-mediated expression of a nuclear factor kappaB super-repressor in human intestinal epithelial cells. J Immunol 1998; 160: 410–418.

    CAS  PubMed  Google Scholar 

  65. Blattner C, Kannouche P, Litfin M, Bender K, Rahmsdorf HJ, Angulo JF et al. UV-Induced stabilization of c-fos and other short-lived mRNAs. Mol Cell Biol 2000; 20: 3616–3625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cohen-Lahav M, Shany S, Tobvin D, Chaimovitz C, Douvdevani A . Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol Dial Transplant 2006; 21: 889–897.

    Article  CAS  PubMed  Google Scholar 

  67. Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB . Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 1996; 93: 9090–9095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Handeli S, Simon JA . A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPARgamma and PPARdelta activities. Mol Cancer Ther 2008; 7: 521–529.

    Article  CAS  PubMed  Google Scholar 

  69. Shin HM, Kim MH, Kim BH, Jung SH, Kim YS, Park HJ et al. Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-kappaB without affecting IkappaB degradation. FEBS Lett 2004; 571: 50–54.

    Article  CAS  PubMed  Google Scholar 

  70. Ratti M, Tomasello G . Emerging combination therapies to overcome resistance in EGFR-driven tumors. Anticancer Drugs 2014; 25: 127–139.

    Article  CAS  PubMed  Google Scholar 

  71. Kumler I, Tuxen MK, Nielsen DL . A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev 2014; 40: 259–270.

    Article  CAS  PubMed  Google Scholar 

  72. Yoshimura H, Dhar DK, Nakamoto T, Kotoh T, Takano M, Soma G et al. Prognostic significance of tumor necrosis factor receptor in colorectal adenocarcinoma. Anticancer Res 2003; 23: 85–89.

    CAS  PubMed  Google Scholar 

  73. Yan SR, Joseph RR, Rosen K, Reginato MJ, Jackson A, Allaire N et al. Activation of NF-kappaB following detachment delays apoptosis in intestinal epithelial cells. Oncogene 2005; 24: 6482–6491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kontermann RE, Munkel S, Neumeyer J, Muller D, Branschadel M, Scheurich P et al. A humanized tumor necrosis factor receptor 1 (TNFR1)-specific antagonistic antibody for selective inhibition of tumor necrosis factor (TNF) action. J Immunother 2008; 31: 225–234.

    Article  CAS  PubMed  Google Scholar 

  75. Kim HJ, Hawke N, Baldwin AS . NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 2006; 13: 738–747.

    Article  CAS  PubMed  Google Scholar 

  76. Liu Z, Li H, Derouet M, Filmus J, LaCasse EC, Korneluk RG et al. ras Oncogene triggers up-regulation of cIAP2 and XIAP in intestinal epithelial cells: epidermal growth factor receptor-dependent and -independent mechanisms of ras-induced transformation. J Biol Chem 2005; 280: 37383–37392.

    Article  CAS  PubMed  Google Scholar 

  77. Yoo BH, Berezkin A, Wang Y, Zagryazhskaya A, Rosen KV . Tumor suppressor protein kinase Chk2 is a mediator of anoikis of intestinal epithelial cells. Int J Cancer 2012; 131: 357–366.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Canadian Institutes of Health Research/Nova Scotia Regional Partnership Program (CIHR/NS RPP) Grant 125109 held by KR. KR was a recipient of the CIHR/NS RPP New Investigator Salary award. YL and PSG were recipients of the IWK Health Centre Post Doctoral Fellowship. BHY was a recipient of the IWK Health Centre Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K V Rosen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, B., Masson, O., Li, Y. et al. Anoikis of colon carcinoma cells triggered by β-catenin loss can be enhanced by tumor necrosis factor receptor 1 antagonists. Oncogene 34, 4939–4951 (2015). https://doi.org/10.1038/onc.2014.415

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.415

This article is cited by

Search

Quick links