Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis

Subjects

Abstract

Obscurins, encoded by the single OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. The OBSCN gene is highly mutated in different types of cancers. Loss of giant obscurins from breast epithelial cells confers them with a survival and growth advantage, following exposure to DNA-damaging agents. Here we demonstrate that the expression levels and subcellular distribution of giant obscurins are altered in human breast cancer biopsies compared with matched normal samples. Stable clones of non-tumorigenic MCF10A cells lacking giant obscurins fail to form adhesion junctions, undergo epithelial-to-mesenchymal transition and generate >100-μm mammospheres bearing markers of cancer-initiating cells. Obscurin-knockdown MCF10A cells display markedly increased motility as a sheet in 2-dimensional (2D) substrata and individually in confined spaces and invasion in 3D matrices. In line with these observations, actin filaments redistribute to extending filopodia where they exhibit increased dynamics. MCF10A cells that stably express the K-Ras oncogene and obscurin short hairpin RNA (shRNA), but not scramble control shRNA, exhibit increased primary tumor formation and lung colonization after subcutaneous and tail vein injections, respectively. Collectively, our findings reveal that loss of giant obscurins from breast epithelium results in disruption of the cell–cell contacts and acquisition of a mesenchymal phenotype that leads to enhanced tumorigenesis, migration and invasiveness in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ . Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89: 1217–1267.

    Article  CAS  PubMed  Google Scholar 

  2. Kontrogianni-Konstantopoulos A, Bloch RJ . Obscurin: a multitasking muscle giant. J Muscle Res Cell Motil 2005; 26: 419–426.

    Article  CAS  PubMed  Google Scholar 

  3. Perry NA, Ackermann MA, Shriver M, Hu LY, Kontrogianni-Konstantopoulos A . Obscurins: unassuming giants enter the spotlight. IUBMB Life 2013; 65: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russell MW, Raeker MO, Korytkowski KA, Sonneman KJ . Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene 2002; 282: 237–246.

    Article  CAS  PubMed  Google Scholar 

  5. Fukuzawa A, Idowu S, Gautel M . Complete human gene structure of obscurin: implications for isoform generation by differential splicing. J Muscle Res Cell Motil 2005; 26: 427–434.

    Article  CAS  PubMed  Google Scholar 

  6. Hu LY, Kontrogianni-Konstantopoulos A . The kinase domains of obscurin interact with intercellular adhesion proteins. FASEB J 2013; 27: 2001–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borisov AB, Raeker MO, Russell MW . Developmental expression and differential cellular localization of obscurin and obscurin-associated kinase in cardiac muscle cells. J Cell Biochem 2008; 103: 1621–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    Article  PubMed  Google Scholar 

  9. Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A et al. Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res 2007; 67: 3545–3550.

    Article  CAS  PubMed  Google Scholar 

  10. Price ND, Trent J, El-Naggar AK, Cogdell D, Taylor E, Hunt KK et al. Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Natl Acad Sci USA 2007; 104: 3414–3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perry NA, Shriver M, Mameza MG, Grabias B, Balzer E, Kontrogianni-Konstantopoulos A . Loss of giant obscurins promotes breast epithelial cell survival through apoptotic resistance. FASEB J 2012; 26: 2764–2775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baum B, Georgiou M . Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 2011; 192: 907–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phillips TM, McBride WH, Pajonk F . The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98: 1777–1785.

    Article  PubMed  Google Scholar 

  14. Foroni C, Broggini M, Generali D, Damia G . Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev 2012; 38: 689–697.

    Article  CAS  PubMed  Google Scholar 

  15. Balzer EM, Tong Z, Paul CD, Hung WC, Stroka KM, Boggs AE et al. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J 2012; 26: 4045–4056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hung WC, Chen SH, Paul CD, Stroka KM, Lo YC, Yang JT et al. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J Cell Biol 2013; 202: 807–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen SH, Hung WC, Wang P, Paul C, Konstantopoulos K . Mesothelin binding to CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation. Sci Rep 2013; 3: 1870.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tong Z, Balzer EM, Dallas MR, Hung WC, Stebe KJ, Konstantopoulos K . Chemotaxis of cell populations through confined spaces at single-cell resolution. PLoS One 2012; 7: e29211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoenerhoff MJ, Chu I, Barkan D, Liu ZY, Datta S, Dimri GP et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene 2009; 28: 3022–3032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang B, Soule HD, Miller FR . Transforming and oncogenic potential of activated c-Ha-ras in three immortalized human breast epithelial cell lines. Anticancer Res 1997; 17: 4387–4394.

    CAS  PubMed  Google Scholar 

  21. Ciardiello F, Gottardis M, Basolo F, Pepe S, Normanno N, Dickson RB et al. Additive effects of c-erbB-2, c-Ha-ras, and transforming growth factor-alpha genes on in vitro transformation of human mammary epithelial cells. Mol Carcinog 1992; 6: 43–52.

    Article  CAS  PubMed  Google Scholar 

  22. Dallas MR, Liu G, Chen WC, Thomas SN, Wirtz D, Huso DL et al. Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J 2012; 26: 2648–2656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE et al. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 2010; 107: 2598–2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rago C, Huso DL, Diehl F, Karim B, Liu G, Papadopoulos N et al. Serial assessment of human tumor burdens in mice by the analysis of circulating DNA. Cancer Res 2007; 67: 9364–9370.

    Article  CAS  PubMed  Google Scholar 

  25. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  26. Friedl P, Alexander S . Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011; 147: 992–1009.

    Article  CAS  PubMed  Google Scholar 

  27. Knights AJ, Funnell AP, Crossley M, Pearson RC . Holding tight: cell junctions and cancer spread. Trends Cancer Res 2012; 8: 61–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brasch J, Harrison OJ, Honig B, Shapiro L . Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 2012; 22: 299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gottardi CJ, Wong E, Gumbiner BM . E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 2001; 153: 1049–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Valenta T, Hausmann G, Basler K . The many faces and functions of beta-catenin. EMBO J 2012; 31: 2714–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holland JD, Klaus A, Garratt AN, Birchmeier W . Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 2013; 25: 254–264.

    Article  CAS  PubMed  Google Scholar 

  32. Kontrogianni-Konstantopoulos A, Catino DH, Strong JC, Sutter S, Borisov AB, Pumplin DW et al. Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasmic reticulum. FASEB J 2006; 20: 2102–2111.

    Article  CAS  PubMed  Google Scholar 

  33. Kontrogianni-Konstantopoulos A, Jones EM, Van Rossum DB, Bloch RJ . Obscurin is a ligand for small ankyrin 1 in skeletal muscle. Mol Biol Cell 2003; 14: 1138–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scheel C, Weinberg RA . Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 2012; 22: 396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drasin DJ, Robin TP, Ford HL . Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res 2011; 13: 226.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–15454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chiang AC, Massague J . Molecular basis of metastasis. N Engl J Med 2008; 359: 2814–2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bravo-Cordero JJ, Hodgson L, Condeelis J . Directed cell invasion and migration during metastasis. Curr Opin Cell Biol 2012; 24: 277–283.

    Article  CAS  PubMed  Google Scholar 

  39. Arjonen A, Kaukonen R, Ivaska J . Filopodia and adhesion in cancer cell motility. Cell Adh Migr 2011; 5: 421–430.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chhabra ES, Higgs HN . The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 2007; 9: 1110–1121.

    Article  CAS  PubMed  Google Scholar 

  41. Hall A . Rho family GTPases. Biochem Soc Trans 2012; 40: 1378–1382.

    Article  CAS  PubMed  Google Scholar 

  42. Ford-Speelman DL, Roche JA, Bowman AL, Bloch RJ . The rho-guanine nucleotide exchange factor domain of obscurin activates rhoA signaling in skeletal muscle. Mol Biol Cell 2009; 20: 3905–3917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 2001; 15: 50–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ackermann MA, Hu LY, Bowman AL, Bloch RJ, Kontrogianni-Konstantopoulos A . Obscurin interacts with a novel isoform of MyBP-C slow at the periphery of the sarcomeric M-band and regulates thick filament assembly. Mol Biol Cell 2009; 20: 2963–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C et al. Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors. Proc Natl Acad Sci USA 2006; 103: 3351–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Samuels Y, Diaz LA Jr., Schmidt-Kittler O, Cummins JM, Delong L, Cheong I et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005; 7: 561–573.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Pilot Grant from The Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins Institute for NanoBioTechnology (U54CA143868 to AK-K) and by awards from the National Science Foundation (Award NSF-1159823 to KK), the National Cancer Institute (Awards U54-CA143868 to KK; R01-CA186286 to KK; T32-CA130840 to KMS; F32-CA177756 to KMS; R01-CA154624 to SM and K01-CA166576 to MIV) and the Kleberg Foundation (to KK). Portions of this work are included in a United States patent pending, 14/221,755, filed on 21 March 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Kontrogianni-Konstantopoulos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shriver, M., Stroka, K., Vitolo, M. et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene 34, 4248–4259 (2015). https://doi.org/10.1038/onc.2014.358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.358

This article is cited by

Search

Quick links