Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ERβ decreases breast cancer cell survival by regulating the IRE1/XBP-1 pathway

Subjects

Abstract

Unfolded protein response (UPR) is an adaptive reaction that allows cancer cells to survive endoplasmic reticulum (EnR) stress that is often induced in the tumor microenvironment because of inadequate vascularization. Previous studies report an association between activation of the UPR and reduced sensitivity to antiestrogens and chemotherapeutics in estrogen receptor α (ERα)-positive and triple-negative breast cancers, respectively. ERα has been shown to regulate the expression of a key mediator of the EnR stress response, the X-box-binding protein-1 (XBP-1). Although network prediction models have associated ERβ with the EnR stress response, its role as regulator of the UPR has not been experimentally tested. Here, upregulation of wild-type ERβ (ERβ1) or treatment with ERβ agonists enhanced apoptosis in breast cancer cells in the presence of pharmacological inducers of EnR stress. Targeting the BCL-2 to the EnR of the ERβ1-expressing cells prevented the apoptosis induced by EnR stress but not by non-EnR stress apoptotic stimuli indicating that ERβ1 promotes EnR stress-regulated apoptosis. Downregulation of inositol-requiring kinase 1α (IRE1α) and decreased splicing of XBP-1 were associated with the decreased survival of the EnR-stressed ERβ1-expressing cells. ERβ1 was found to repress the IRE1 pathway of the UPR by inducing degradation of IRE1α. These results suggest that the ability of ERβ1 to target the UPR may offer alternative treatment strategies for breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  2. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    Article  CAS  Google Scholar 

  3. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    Article  Google Scholar 

  4. Thomas C, Gustafsson JA . The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 2011; 11: 597–608.

    Article  CAS  Google Scholar 

  5. Clarke R, Shajahan AN, Wang Y, Tyson JJ, Riggins RB, Weiner LM et al. Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm Mol Biol Clin Invest 2011; 5: 35–44.

    CAS  Google Scholar 

  6. Koong AC, Chauhan V, Romero-Ramirez L . Targeting XBP-1 as a novel anti-cancer strategy. Cancer Biol Ther 2006; 5: 756–759.

    Article  CAS  Google Scholar 

  7. Ma Y, Hendershot LM . The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004; 4: 966–977.

    Article  CAS  Google Scholar 

  8. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 2002; 22: 7405–7416.

    Article  CAS  Google Scholar 

  9. Zhang K, Kaufman RJ . The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 2006; 66: S102–S109.

    Article  CAS  Google Scholar 

  10. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92–96.

    Article  CAS  Google Scholar 

  11. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002; 16: 452–466.

    Article  CAS  Google Scholar 

  12. Lee AH, Iwakoshi NN, Glimcher LH . XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23: 7448–7459.

    Article  CAS  Google Scholar 

  13. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K . A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 2003; 4: 265–271.

    Article  CAS  Google Scholar 

  14. Xu C, Bailly-Maitre B, Reed JC . Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115: 2656–2664.

    Article  CAS  Google Scholar 

  15. Fu Y, Li J, Lee AS . GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 2007; 67: 3734–3740.

    Article  CAS  Google Scholar 

  16. Cook KL, Shajahan AN, Warri A, Jin L, Hilakivi-Clarke LA, Clarke R . Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res 2012; 72: 3337–3349.

    Article  CAS  Google Scholar 

  17. Lee E, Nichols P, Groshen S, Spicer D, Lee AS . GRP78 as potential predictor for breast cancer response to adjuvant taxane therapy. Int J Cancer 2011; 128: 726–731.

    Article  CAS  Google Scholar 

  18. Gu Z, Lee RY, Skaar TC, Bouker KB, Welch JN, Lu J et al. Association of interferon regulatory factor-1, nucleophosmin, nuclear factor-kappaB, and cyclic AMP response element binding with acquired resistance to Faslodex (ICI 182 780). Cancer Research 2002; 62: 3428–3437.

    CAS  PubMed  Google Scholar 

  19. Gomez BP, Riggins RB, Shajahan AN, Klimach U, Wang A, Crawford AC et al. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J Biology 2007; 21: 4013–4027.

    Article  CAS  Google Scholar 

  20. Davies MP, Barraclough DL, Stewart C, Joyce KA, Eccles RM, Barraclough R et al. Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. International J Cancer 2008; 123: 85–88.

    Article  CAS  Google Scholar 

  21. Sengupta S, Sharma CG, Jordan VC . Estrogen regulation of X-box binding protein-1 and its role in estrogen induced growth of breast and endometrial cancer cells. Horm Mol Biol Clin Invest 2010; 2: 235–243.

    CAS  Google Scholar 

  22. Ding L, Yan J, Zhu J, Zhong H, Lu Q, Wang Z et al. Ligand-independent activation of estrogen receptor alpha by XBP-1. Nucleic Acids Res 2003; 31: 5266–5274.

    Article  CAS  Google Scholar 

  23. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 2014; 508: 103–107.

    Article  CAS  Google Scholar 

  24. Thomas C, Rajapaksa G, Nikolos F, Hao R, Katchy A, McCollum CW et al. ERbeta1 represses basal-like breast cancer epithelial to mesenchymal transition by destabilizing EGFR. Breast Cancer Res 2012; 14: R148.

    Article  CAS  Google Scholar 

  25. Honma N, Horii R, Iwase T, Saji S, Younes M, Takubo K et al. Clinical importance of estrogen receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J Clin Oncol 2008; 26: 3727–3734.

    Article  Google Scholar 

  26. Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL et al. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res 2012; 72: 1321–1331.

    Article  CAS  Google Scholar 

  27. Zhang B, Li H, Riggins RB, Zhan M, Xuan J, Zhang Z et al. Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 2009; 25: 526–532.

    Article  Google Scholar 

  28. Cheng L, Li J, Han Y, Lin J, Niu C, Zhou Z et al. PES1 promotes breast cancer by differentially regulating ERalpha and ERbeta. J Clin Invest 2012; 122: 2857–2870.

    Article  CAS  Google Scholar 

  29. Kane RC, Dagher R, Farrell A, Ko CW, Sridhara R, Justice R et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res 2007; 13: 5291–5294.

    Article  CAS  Google Scholar 

  30. Gadbois DM, Hamaguchi JR, Swank RA, Bradbury EM . Staurosporine is a potent inhibitor of p34cdc2 and p34cdc2-like kinases. Biochem Biophys Res Commun 1992; 184: 80–85.

    Article  CAS  Google Scholar 

  31. Thomas CG, Strom A, Lindberg K, Gustafsson JA . Estrogen receptor beta decreases survival of p53-defective cancer cells after DNA damage by impairing G(2)/M checkpoint signaling. Breast Cancer Res Treat 2011; 127: 417–427.

    Article  CAS  Google Scholar 

  32. Janicke RU, Sprengart ML, Wati MR, Porter AG . Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 273: 9357–9360.

    Article  CAS  Google Scholar 

  33. Crawford AC, Riggins RB, Shajahan AN, Zwart A, Clarke R . Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis. PLoS ONE 2010; 5: e8604.

    Article  Google Scholar 

  34. Shajahan AN, Dobbin ZC, Hickman FE, Dakshanamurthy S, Clarke R . Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal kinase (JNK). J Biol Chem 2012; 287: 17682–17692.

    Article  CAS  Google Scholar 

  35. Rodriguez DA, Zamorano S, Lisbona F, Rojas-Rivera D, Urra H, Cubillos-Ruiz JR et al. BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1alpha. EMBO J 2012; 31: 2322–2335.

    Article  CAS  Google Scholar 

  36. Gao B, Lee SM, Chen A, Zhang J, Zhang DD, Kannan K et al. Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep 2008; 9: 480–485.

    Article  CAS  Google Scholar 

  37. Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L . Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha. Mol Cell Biol 2002; 22: 8506–8513.

    Article  CAS  Google Scholar 

  38. Davis AM, Mao J, Naz B, Kohl JA, Rosenfeld CS . Comparative effects of estradiol, methyl-piperidino-pyrazole, raloxifene, and ICI 182 780 on gene expression in the murine uterus. J Mol Endocrinol 2008; 41: 205–217.

    Article  CAS  Google Scholar 

  39. Butler WB, Fontana JA . Responses to retinoic acid of tamoxifen-sensitive and -resistant sublines of human breast cancer cell line MCF-7. Cancer Res 1992; 52: 6164–6167.

    CAS  PubMed  Google Scholar 

  40. Hodges-Gallagher L, Valentine CD, El Bader S, Kushner PJ . Estrogen receptor beta increases the efficacy of antiestrogens by effects on apoptosis and cell cycling in breast cancer cells. Breast Cancer Res Treat 2008; 109: 241–250.

    Article  CAS  Google Scholar 

  41. Shaaban AM, Green AR, Karthik S, Alizadeh Y, Hughes TA, Harkins L et al. Nuclear and cytoplasmic expression of ERbeta1, ERbeta2, and ERbeta5 identifies distinct prognostic outcome for breast cancer patients. Clin Cancer Res 2008; 14: 5228–5235.

    Article  CAS  Google Scholar 

  42. Hartman J, Edvardsson K, Lindberg K, Zhao C, Williams C, Strom A et al. Tumor repressive functions of estrogen receptor beta in SW480 colon cancer cells. Cancer Res 2009; 69: 6100–6106.

    Article  CAS  Google Scholar 

  43. Nikolos F, Thomas C, Rajapaksa G, Bado I, Gustafsson JA . ERbeta regulates NSCLC phenotypes by controlling oncogenic RAS signaling. Mol Cancer Res 2014; 12: 843–854.

    Article  CAS  Google Scholar 

  44. Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA et al. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 2010; 17: 319–332.

    Article  CAS  Google Scholar 

  45. Yang CH, Gonzalez-Angulo AM, Reuben JM, Booser DJ, Pusztai L, Krishnamurthy S et al. Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann Oncol 2006; 17: 813–817.

    Article  CAS  Google Scholar 

  46. Jones MD, Liu JC, Barthel TK, Hussain S, Lovria E, Cheng D et al. A proteasome inhibitor, bortezomib, inhibits breast cancer growth and reduces osteolysis by downregulating metastatic genes. Clin Cancer Res 2010; 16: 4978–4989.

    Article  CAS  Google Scholar 

  47. Leung YK, Gao Y, Lau KM, Zhang X, Ho SM . ICI 182 780-regulated gene expression in DU145 prostate cancer cells is mediated by estrogen receptor-beta/NFkappaB crosstalk. Neoplasia 2006; 8: 242–249.

    Article  CAS  Google Scholar 

  48. Nakajima Y, Akaogi K, Suzuki T, Osakabe A, Yamaguchi C, Sunahara N et al. Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERbeta and KLF5. Sci Signal 2011; 4: ra22.

    Article  Google Scholar 

  49. Butler WB, Berlinski PJ, Hillman RM, Kelsey WH, Toenniges MM . Relation of in vitro properties to tumorigenicity for a series of sublines of the human breast cancer cell line MCF-7. Cancer Res 1986; 46: 6339–6348.

    CAS  PubMed  Google Scholar 

  50. Thomas CG, Spyrou G . ERdj5 sensitizes neuroblastoma cells to endoplasmic reticulum stress-induced apoptosis. J Biol Chem 2009; 284: 6282–6290.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C Koumenis for the Bcl-2 expression vector and Anders Strom for the ERβ2 expression lentivirus. We also thank Efrocini Cuko for technical assistance with confocal microscopy. This study was supported by grants from the Swedish Cancer Society, the Robert A Welch Foundation (E-0004), the Emerging Technology Fund of Texas under Agreement 300-9-1958 and the U54-CA149147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Thomas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapaksa, G., Nikolos, F., Bado, I. et al. ERβ decreases breast cancer cell survival by regulating the IRE1/XBP-1 pathway. Oncogene 34, 4130–4141 (2015). https://doi.org/10.1038/onc.2014.343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.343

This article is cited by

Search

Quick links