Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition

Abstract

Metastatic progression, including extravasation and micrometastatic outgrowth, is the main cause of cancer patient death. Recent studies suggest that cancer cells reprogram their metabolism to support increased proliferation through increased glycolysis and biosynthetic activities, including lipogenesis pathways. However, metabolic changes during metastatic progression, including alterations in regulatory gene expression, remain undefined. We show that transforming growth factor beta 1 (TGFβ1)-induced epithelial-to-mesenchymal transition (EMT) is accompanied by coordinately reduced enzyme expression required to convert glucose into fatty acids, and concomitant enhanced respiration. Overexpressed Snail1, a transcription factor mediating TGFβ1-induced EMT, was sufficient to suppress carbohydrate-responsive-element-binding protein (ChREBP, a master lipogenic regulator), and fatty acid synthase (FASN), its effector lipogenic gene. Stable FASN knockdown was sufficient to induce EMT, stimulate migration and extravasation in vitro. FASN silencing enhanced lung metastasis and death in vivo. These data suggest that a metabolic transition that suppresses lipogenesis and favors energy production is an essential component of TGFβ1-induced EMT and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Semenza GL . Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol Med 2012; 18: 534–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pallis AG, Syrigos K . Targeted (and chemotherapeutic) agents as maintenance treatment in patients with metastatic non-small-cell lung cancer: current status and future challenges. Cancer Treat Rev 2012; 38: 861–867.

    Article  CAS  PubMed  Google Scholar 

  3. Zavadil J, Bottinger EP . TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005; 24: 5764–5774.

    Article  CAS  PubMed  Google Scholar 

  4. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA . Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009; 119: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang L, Moses HL . Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 2008; 68: 9107–9111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim WS, Park C, Jung YS, Kim HS, Han J Park CH et al. Reduced transforming growth factor-beta type II receptor (TGF-beta RII) expression in adenocarcinoma of the lung. Anticancer Res 1999; 19: 301–306.

    CAS  PubMed  Google Scholar 

  7. Elliott RL, Blobe GC . Role of transforming growth factor Beta in human cancer. J Clin Oncol 2005; 23: 2078–2093.

    Article  CAS  PubMed  Google Scholar 

  8. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  9. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  10. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    Article  CAS  PubMed  Google Scholar 

  12. Shao W, Espenshade PJ . Expanding roles for SREBP in metabolism. Cell Metab 2012; 16: 414–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanai J, Doro N, Sasaki AT, Kobayashi S, Cantley LC, Seth P et al. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol 2012; 227: 1709–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8: 311–321.

    Article  CAS  PubMed  Google Scholar 

  15. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB . ATP citrate lyase is an important component of cell growth and transformation. Oncogene 2005; 24: 6314–6322.

    Article  CAS  PubMed  Google Scholar 

  16. Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV . RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res 2005; 65: 6719–6725.

    Article  CAS  PubMed  Google Scholar 

  17. Lupu R, Menendez JA . Pharmacological inhibitors of Fatty Acid Synthase (FASN)—catalyzed endogenous fatty acid biogenesis: a new family of anti-cancer agents? Curr Pharm Biotechnol 2006; 7: 483–493.

    Article  CAS  PubMed  Google Scholar 

  18. Kim JH, Jang YS, Eom KS, Hwang YI, Kang HR, Jang SH et al. Transforming growth factor beta1 induces epithelial-to-mesenchymal transition of A549 cells. J Korean Med Sci 2007; 22: 898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D et al. TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest 2010; 120: 290–302.

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Sun H, Qi J, Wang L, He S, Liu J et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol 2013; 15: 829–838.

    Article  CAS  PubMed  Google Scholar 

  21. Uyeda K, Yamashita H, Kawaguchi T . Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol 2002; 63: 2075–2080.

    Article  CAS  PubMed  Google Scholar 

  22. De Schrijver E, Brusselmans K, Heyns W, Verhoeven G, Swinnen JV . RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res 2003; 63: 3799–3804.

    CAS  PubMed  Google Scholar 

  23. Ferreira LM, Hebrant A, Dumont JE . Metabolic reprogramming of the tumor. Oncogene 2012; 31: 3999–4011.

    Article  CAS  PubMed  Google Scholar 

  24. Metallo CM, Vander Heiden MG . Understanding metabolic regulation and its influence on cell physiology. Mol Cell 2013; 49: 388–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou H, Zhang B, Zheng J, Yu M, Zhou T, Zhao K et al. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials 2014; 35: 1597–1607.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan HX, Xiong Y, Guan KL . Nutrient sensing, metabolism, and cell growth control. Mol Cell 2013; 49: 379–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F . SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004; 86: 839–848.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson CB . Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med 2009; 360: 813–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ikushima H, Miyazono K . TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10: 415–424.

    Article  CAS  PubMed  Google Scholar 

  30. Huang X, Dong Y, Bey EA, Kilgore JA, Bair JS, Li LS et al. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Res 2012; 72: 3038–3047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goetz EM, Shankar B, Zou Y, Morales JC, Luo X, Araki S et al. ATM-dependent IGF-1 induction regulates secretory clusterin expression after DNA damage and in genetic instability. Oncogene 2011; 30: 3745–3754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klokov D, Leskov K, Araki S, Zou Y, Goetz EM, Luo X et al. Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascade that interferes with TGFbeta1 signaling to confer a pro-survival bystander effect. Oncogene 2013; 32: 479–490.

    Article  CAS  PubMed  Google Scholar 

  33. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282: 26687–26695.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Xiuquan Luo for his aid in the BLI measurements and animal injections. This work was supported by DOE/NASA grant DE-FG-022179-18-21 and by NIH R01 CA139217 to DAB and NIH RO1 CA157996 and CPRIT RP130272 to RJD. We are grateful to the imaging core of the Simmons Cancer Center Support Grant (5P30 CA142543-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R J Deberardinis or D A Boothman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Xiao, L., Sugiura, H. et al. Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene 34, 3908–3916 (2015). https://doi.org/10.1038/onc.2014.321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.321

This article is cited by

Search

Quick links