Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization

Subjects

Abstract

Osteosarcoma (OS) is the most common malignant bone tumor and the majority of recurrences are due to metastasis. However, the molecular mechanisms that regulate OS metastatic spread are largely unknown. In this study, we report that special AT-rich-binding protein 2 (SATB2) is highly expressed in OS cells and tumors. Short hairpin RNA-mediated knockdown of SATB2 (sh-SATB2) decreases migration and invasion of OS cells without affecting proliferation or viability. Microarray analysis identified genes that were differentially regulated by SATB2 including the actin-binding protein Epithelial Protein Lost In Neoplasm (EPLIN), which was upregulated in sh-SATB2 cells. Silencing EPLIN rescues the decreased invasion observed in sh-SATB2 cells. Pathway analyses of SATB2-regulated genes revealed enrichment of those involved in cytoskeleton dynamics, and increased stress fiber formation was detected in cells with SATB2 knockdown. Furthermore, sh-SATB2 cells exhibit increased RhoA, decreased Rac1 and increased phosphorylation of focal adhesion kinase (FAK) and paxillin. These findings identify SATB2 as a novel regulator of OS invasion, in part via effects on EPLIN and the cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Broadhead ML, Clark JCM, Myers DE, Dass CR, Choong PFM . The molecular pathogenesis of osteosarcoma: a review. Sarcoma 2011; 2011: 1–12.

    Article  Google Scholar 

  2. Britanova O, Depew MJ, Schwark M, Thomas BL, Miletich I, Sharpe P et al. Satb2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development. Am J Hum Genet 2006; 79: 668–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Fariñas I et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 2006; 125: 971–986.

    Article  CAS  PubMed  Google Scholar 

  4. Dobreva G . SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin gene expression. Genes Dev 2003; 17: 3048–3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 2008; 57: 378–392.

    Article  CAS  PubMed  Google Scholar 

  6. Han H-J, Russo J, Kohwi Y, Kohwi-Shigematsu T . SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 2008; 452: 187–193.

    Article  CAS  PubMed  Google Scholar 

  7. Chung J, Lau J, Cheng LS, Grant RI, Robinson F, Ketela T et al. SATB2 augments ΔNp63α in head and neck squamous cell carcinoma. EMBO Rep 2010; 11: 777–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aprelikova O, Yu X, Palla J, Wei B-R, John S, Yi M et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 2010; 9: 4387–4398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patani N, Jiang W, Mansel R, Newbold R, Mokbel K . The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int 2009; 9: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eberhard J, Gaber A, Wangefjord S, Nodin B, Uhlén M, Ericson Lindquist K et al. A cohort study of the prognostic and treatment predictive value of SATB2 expression in colorectal cancer. Br J Cancer 2012; 106: 931–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olson MF, Sahai E . The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 2008; 26: 273–287.

    Article  PubMed  Google Scholar 

  12. Parri M, Chiarugi P . Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010; 8: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Wang X, Osunkoya AO, Iqbal S, Wang Y, Chen Z et al. EPLIN downregulation promotes epithelial–mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene 2011; 30: 4941–4952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maul RS, Chang DD . EPLIN, epithelial protein lost in neoplasm. Oncogene 1999; 18: 7838–7841.

    Article  CAS  PubMed  Google Scholar 

  15. Abe K, Takeichi M . EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA [Internet] 2007; 105: 13–19. Available from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=18093941&retmode=ref&cmd=prlinks.

    Article  Google Scholar 

  16. Molyneux SD, Di Grappa MA, Beristain AG, McKee TD, Wai DH, Paderova J et al. Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice. J Clin Invest 2010; 120: 3310–3325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Latini FRM, Hemerly JP, Oler G, Riggins GJ, Cerutti JM . Re-expression of ABI3-binding protein suppresses thyroid tumor growth by promoting senescence and inhibiting invasion. Endocr Relat Cancer 2008; 15: 787–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L et al. ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res 2013; 73: 3625–3637.

    Article  CAS  PubMed  Google Scholar 

  19. Zech T, Calaminus SDJ, Caswell P, Spence HJ, Carnell M, Insall RH et al. The Arp2/3 activator WASH regulates 5 1-integrin-mediated invasive migration. J Cell Sci 2011; 124: 3753–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sahai E, Marshall CJ . RHO-GTPases and cancer. Nat Rev Cancer 2002; 2: 133–142.

    Article  PubMed  Google Scholar 

  21. Maul RS . EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J Cell Biol 2003; 160: 399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW et al. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity 2013; 38: 1105–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao X, Qu Z, Tickner J, Xu J, Dai K, Zhang X . The role of SATB2 in skeletogenesis and human disease. Cytokine Growth Factor Rev 2014; 25: 35–44.

    Article  CAS  PubMed  Google Scholar 

  24. Leoyklang P, Suphapeetiporn K, Siriwan P, Desudchit T, Chaowanapanja P, Gahl WA et al. Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum Mutat 2007; 28: 732–738.

    Article  CAS  PubMed  Google Scholar 

  25. Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 2012; 197: 509–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hassan MQ, Gordon JAR, Beloti MM, Croce CM, van Wijnen AJ, Stein JL et al. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA 2010; 107: 19879–19884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Conner JR, Hornick JL . SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours. Histopathology 2013; 63: 36–49.

    Article  PubMed  Google Scholar 

  28. Hall A . The cytoskeleton and cancer. Cancer Metastasis Rev 2009; 28 (1-2): 5–14.

    Article  PubMed  Google Scholar 

  29. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 2004; 10: 182–186.

    Article  CAS  PubMed  Google Scholar 

  30. Zucchini C, Manara MC, Pinca RS, De Sanctis P, Guerzoni C, Sciandra M et al. CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity. Oncogene 2014; 33: 1912–1921.

    Article  CAS  PubMed  Google Scholar 

  31. Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Fürst K et al. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell 2013; 24: 512–527.

    Article  CAS  PubMed  Google Scholar 

  32. Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 2001; 61: 3750–3759.

    CAS  PubMed  Google Scholar 

  33. Flores RJ, Li Y, Yu A, Shen J, Rao PH, Lau SS et al. A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC Syst Biol 2012; 6: 50.

    Article  PubMed  PubMed Central  Google Scholar 

  34. O'Donoghue LE, Ptitsyn AA, Kamstock DA, Siebert J, Thomas RS, Duval DL . Expression profiling in canine osteosarcoma: identification of biomarkers and pathways associated with outcome. BMC Cancer 2010; 10: 506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res 2012; 72: 1865–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huveneers S, Danen EHJ . Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci 2009; 122: 1059–1069.

    Article  CAS  PubMed  Google Scholar 

  37. Tsurumi H, Harita Y, Kurihara H, Kosako H, Hayashi K, Matsunaga A et al. Epithelial protein lost in neoplasm modulates platelet-derived growth factor-mediated adhesion and motility of mesangial cells. Kidney Int 2014; 86: 548–557.

    Article  CAS  PubMed  Google Scholar 

  38. Sanders AJ, Ye L, Mason MD, Jiang WG . The impact of EPLINα (Epithelial protein lost in neoplasm) on endothelial cells, angiogenesis and tumorigenesis. Angiogenesis 2010; 13: 317–326.

    Article  CAS  PubMed  Google Scholar 

  39. Quizi JL, Baron K, Al-Zahrani KN, Reilly POA, Sriram RK, Conway J et al. SLK-mediated phosphorylation of paxillin is required for focal adhesion turnover and cell migration. Oncogene 2012; 32: 4656–4663.

    Article  PubMed  Google Scholar 

  40. Zaidel-Bar R, Milo R, Kam Z, Geiger B . A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 2006; 120: 137–148.

    Article  PubMed  Google Scholar 

  41. Abou Zeid N, Vallés A-M, Boyer B . Serine phosphorylation regulates paxillin turnover during cell migration. Cell Commun Signal 2006; 4: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stehn JR, Haass NK, Bonello T, Desouza M, Kottyan G, Treutlein H et al. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res 2013; 73: 5169–5182.

    Article  CAS  PubMed  Google Scholar 

  43. Schneider CA, Rasband WS, Eliceiri KW . NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Merico D, Isserlin R, Stueker O, Emili A, Bader GD . Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 2010; 5: e13984.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the Canadian Cancer Society Research Institute (#2010-700580, MSI), Ontario Research Fund (MSI, DM) and a Canada Research Chair in Cancer Biology (MSI). BKAS and JL received scholarships from Hospital for Sick Children Research Training Centre (Restracomp). We are grateful for assistance with microarray analyses from Daniel Picard and Dr Annie Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Irwin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seong, B., Lau, J., Adderley, T. et al. SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene 34, 3582–3592 (2015). https://doi.org/10.1038/onc.2014.289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.289

This article is cited by

Search

Quick links