Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2

Abstract

Vascular endothelial growth factor-A (VEGF), a potent angiogenic factor, is also implicated in self-renewal in several normal tissue types. VEGF has been shown to drive malignant stem cells but mechanisms thereof and tumor types affected are not fully characterized. Here, we show VEGF promotes breast and lung cancer stem cell (CSC) self-renewal via VEGF receptor-2 (VEGFR-2)/STAT3-mediated upregulation of Myc and Sox2. VEGF increased tumor spheres and aldehyde dehydrogenase activity, both proxies for stem cell function in vitro, in triple-negative breast cancer (TNBC) lines and dissociated primary cancers, and in lung cancer lines. VEGF exposure before injection increased breast cancer-initiating cell abundance in vivo yielding increased orthotopic tumors, and increased metastasis from orthotopic primaries and following tail vein injection without further VEGF treatment. VEGF rapidly stimulated VEGFR-2/JAK2/STAT3 binding and activated STAT3 to bind MYC and SOX2 promoters and induce their expression. VEGFR-2 knockdown or inhibition abrogated VEGF-mediated STAT3 activation, MYC and SOX2 induction and sphere formation. Notably, knockdown of either STAT3, MYC or SOX2 impaired VEGF-upregulation of pSTAT3, MYC and SOX2 expression and sphere formation. Each transcription factor, once upregulated, appears to promote sustained activation of the others, creating a feed-forward loop to drive self-renewal. Thus, in addition to angiogenic effects, VEGF promotes tumor-initiating cell self-renewal through VEGFR-2/STAT3 signaling. Analysis of primary breast and lung cancers (>1300 each) showed high VEGF expression, was prognostic of poor outcome and strongly associated with STAT3 and MYC expression, supporting the link between VEGF and CSC self-renewal. High-VEGF tumors may be most likely to escape anti-angiogenics by upregulating VEGF, driving CSC self-renewal to re-populate post-treatment. Our work highlights the need to better define VEGF-driven cancer subsets and supports further investigation of combined therapeutic blockade of VEGF or VEGFR-2 and JAK2/STAT3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dalerba P, Cho RW, Clarke MF Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267–284.

    Article  CAS  Google Scholar 

  2. Takebe N, Harris PJ, Warren RQ, Ivy SP Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8: 97–106.

    Article  CAS  Google Scholar 

  3. Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  Google Scholar 

  4. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555–567.

    Article  CAS  Google Scholar 

  5. Li L, Neaves WB Normal stem cells and cancer stem cells: the niche matters. Cancer Res 2006; 66: 4553–4557.

    Article  CAS  Google Scholar 

  6. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012; 481: 85–89.

    Article  CAS  Google Scholar 

  7. Chung AS, Lee J, Ferrara N Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 2010; 10: 505–514.

    Article  CAS  Google Scholar 

  8. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L VEGF receptor signalling? in control of vascular function. Nat Rev Mol Cell Biol 2006; 7: 359–371.

    Article  CAS  Google Scholar 

  9. Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta 2010; 1806: 108–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanno S, Ohsaki Y, Nakanishi K, Toyoshima E, Kikuchi K . Human small cell lung cancer cells express functional VEGF receptors, VEGFR-2 and VEGFR-3. Lung Cancer 2004; 46: 11–19.

    Article  Google Scholar 

  11. Lee TH, Avraham HK, Jiang S, Avraham S Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 2003; 278: 5277–5284.

    Article  CAS  Google Scholar 

  12. Yang F, Tang X, Riquelme E, Behrens C, Nilsson MB, Giri U et al. Increased VEGFR-2 gene copy is associated with chemoresistance and shorter survival in patients with non small-cell lung carcinoma who receive adjuvant chemotherapy. Cancer Res 2011; 71: 5512–5521.

    Article  CAS  Google Scholar 

  13. Lichtenberger BM, Tan PK, Niederleithner H, Ferrara N, Petzelbauer P, Sibilia M Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 2010; 140: 268–279.

    Article  CAS  Google Scholar 

  14. Kane NM, Xiao Q, Baker AH, Luo Z, Xu Q, Emanueli C Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol Ther 2011; 129: 29–49.

    Article  CAS  Google Scholar 

  15. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002; 417: 954–958.

    Article  CAS  Google Scholar 

  16. Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD et al. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 2010; 30: 80–89.

    Article  CAS  Google Scholar 

  17. Calvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro-Cervello C et al. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev 2011; 25: 831–844.

    Article  CAS  Google Scholar 

  18. Verseijden F, Jahr H, Posthumus-van Sluijs SJ, Ten Hagen TL, Hovius SE, Seynhaeve AL et al. Angiogenic capacity of human adipose-derived stromal cells during adipogenic differentiation: an in vitro study. Tissue Eng Part A 2009; 15: 445–452.

    Article  CAS  Google Scholar 

  19. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 2012; 209: 507–520.

    Article  CAS  Google Scholar 

  20. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 2011; 478: 399–403.

    Article  CAS  Google Scholar 

  21. Pastrana E, Silva-Vargas V, Doetsch F Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 2011; 8: 486–498.

    Article  CAS  Google Scholar 

  22. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 2007; 12: 160–170.

    Article  CAS  Google Scholar 

  23. Drews-Elger K, Brinkman JA, Miller P, Shah SH, Harrell JC, da Silva TG et al. Primary breast tumor-derived cellular models: characterization of tumorigenic, metastatic, and cancer-associated fibroblasts in dissociated tumor (DT) cultures. Breast Cancer Res Treat 2014; 144: 503–517.

    Article  CAS  Google Scholar 

  24. Bayliss J, Hilger A, Vishnu P, Diehl K, El-Ashry D Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin Cancer Res 2007; 13: 7029–7036.

    Article  CAS  Google Scholar 

  25. Mishra DK, Creighton CJ, Zhang Y, Gibbons DL, Kurie JM, Kim MP Gene expression profile of A549 cells from tissue of 4D model predicts poor prognosis in lung cancer patients. Int J Cancer 2013; 134: 789–798.

    Article  Google Scholar 

  26. Liu S, Dontu G, Wicha MS Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 2005; 7: 86–95.

    Article  CAS  Google Scholar 

  27. Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 2011; 30: 3833–3845.

    Article  CAS  Google Scholar 

  28. Yu F, Li J, Chen H, Fu J, Ray S, Huang S et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011; 30: 2161–2172.

    Article  CAS  Google Scholar 

  29. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 2009; 41: 1238–1242.

    Article  CAS  Google Scholar 

  30. Annovazzi L, Mellai M, Caldera V, Valente G, Schiffer D . SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics Proteomics 2011; 8: 139–147.

    CAS  PubMed  Google Scholar 

  31. Xiang R, Liao D, Cheng T, Zhou H, Shi Q, Chuang TS et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer 2011; 104: 1410–1417.

    Article  CAS  Google Scholar 

  32. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2011; 31: 1354–1365.

    Article  Google Scholar 

  33. Bromberg J, Wang TC Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell 2009; 15: 79–80.

    Article  CAS  Google Scholar 

  34. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR et al. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24− stem cell-like breast cancer cells in human tumors. J Clin Invest 2011; 121: 2723–2735.

    Article  CAS  Google Scholar 

  35. Kidder BL, Yang J, Palmer S . Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS ONE 2008; 3: e3932.

    Article  Google Scholar 

  36. Meyer N, Penn LZ Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  Google Scholar 

  37. Ryden L, Stendahl M, Jonsson H, Emdin S, Bengtsson NO, Landberg G . Tumor-specific VEGF-A and VEGFR2 in postmenopausal breast cancer patients with long-term follow-up. Implication of a link between VEGF pathway and tamoxifen response. Breast Cancer Res Treat 2005; 89: 135–143.

    Article  CAS  Google Scholar 

  38. Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE Selective Inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal Anti-VEGF antibody blocks tumor growth in mice. Cancer Res 2000; 60: 5117–5124.

    CAS  PubMed  Google Scholar 

  39. Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 2012; 335: 348–353.

    Article  CAS  Google Scholar 

  40. Cao Y Angiogenesis modulates adipogenesis and obesity. J Clin Invest 2007; 117: 2362–2368.

    Article  CAS  Google Scholar 

  41. Tang JM, Wang JN, Zhang L, Zheng F, Yang JY, Kong X et al. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res 2011; 91: 402–411.

    Article  CAS  Google Scholar 

  42. Brusselmans K, Bono F, Collen D, Herbert JM, Carmeliet P, Dewerchin M A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 2005; 280: 3493–3499.

    Article  CAS  Google Scholar 

  43. Deasy BM, Feduska JM, Payne TR, Li Y, Ambrosio F, Huard J Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 2009; 17: 1788–1798.

    Article  CAS  Google Scholar 

  44. Goel HL, Mercurio AM VEGF targets the tumour cell. Nat Rev Cancer 2013; 13: 871–882.

    Article  CAS  Google Scholar 

  45. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006; 66: 7843–7848.

    Article  CAS  Google Scholar 

  46. Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z et al. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 2009; 69: 7243–7251.

    Article  CAS  Google Scholar 

  47. Gilbertson RJ, Rich JN Making a tumour′s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 2007; 7: 733–736.

    Article  CAS  Google Scholar 

  48. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11: 69–82.

    Article  CAS  Google Scholar 

  49. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15: 501–513.

    Article  CAS  Google Scholar 

  50. Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K et al. GLI1 regulates a novel neuropilin-2/alpha6beta1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med 2013; 5: 488–508.

    Article  CAS  Google Scholar 

  51. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  Google Scholar 

  52. Shibuya M Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 2008; 41: 278–286.

    Article  CAS  Google Scholar 

  53. Chatterjee S, Heukamp LC, Siobal M, Schöttle J, Wieczorek C, Peifer M et al. Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest 2013; 123: 1732–1740.

    Article  CAS  Google Scholar 

  54. Foshay KM, Gallicano GI Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev 2008; 17: 269–278.

    Article  CAS  Google Scholar 

  55. Nair R, Roden DL, Teo WS, McFarland A, Junankar S, Ye S et al. c-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer. Oncogene 2014; 33: 3992–4002.

    Article  CAS  Google Scholar 

  56. Heath VL, Bicknell R Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 2009; 6: 395–404.

    Article  CAS  Google Scholar 

  57. Boere IA, Hamberg P, Sleijfer S It takes two to tango: combinations of conventional cytotoxics with compounds targeting the vascular endothelial growth factor receptor pathway in patients with solid malignancies. Cancer Sci 2010; 101: 7–15.

    Article  CAS  Google Scholar 

  58. Ivy SP, Wick JY, Kaufman BM An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 2009; 6: 569–579.

    Article  CAS  Google Scholar 

  59. Miller KD E2100: a phase III trial of paclitaxel versus paclitaxel/bevacizumab for metastatic breast cancer. Clin Breast Cancer 2003; 3: 421–422.

    Article  CAS  Google Scholar 

  60. Montero AJ, Escobar M, Lopes G, Gluck S, Vogel C Bevacizumab in the treatment of metastatic breast cancer: friend or foe? Curr Oncol Rep 2012; 14: 1–11.

    Article  CAS  Google Scholar 

  61. Montero AJ, Vogel C Fighting fire with fire: rekindling the bevacizumab debate. New Engl J Med 2012; 366: 374–375.

    Article  CAS  Google Scholar 

  62. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15: 232–239.

    Article  CAS  Google Scholar 

  63. Páez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15: 220–231.

    Article  Google Scholar 

  64. Sakariassen PO, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 2006; 103: 16466–16471.

    Article  CAS  Google Scholar 

  65. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 2012; 109: 2784–2789.

    Article  CAS  Google Scholar 

  66. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 2009; 106: 13820–13825.

    Article  CAS  Google Scholar 

  67. Feng XH The changing faces of cancer cells. Nat Rev Mol Cell Biol 2010; 11: 466.

    Article  CAS  Google Scholar 

  68. Han H, Silverman JF, Santucci TS, Macherey RS, d’Amato TA, Tung MY et al. Vascular endothelial growth factor expression in stage I non-small cell lung cancer correlates with neoangiogenesis and a poor prognosis. Ann Surg Oncol 2001; 8: 72–79.

    Article  CAS  Google Scholar 

  69. Cao X, Geradts J, Dewhirst MW, Lo HW Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene 2012; 31: 104–115.

    Article  CAS  Google Scholar 

  70. Ellis LM, Hicklin DJ VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 2008; 8: 579–591.

    Article  CAS  Google Scholar 

  71. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    Article  CAS  Google Scholar 

  72. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  Google Scholar 

  73. Assou S, Le CT, Tondeur S, Strom S, Gabelle A, Marty S et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 2007; 25: 961–973.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Breast Cancer Research Foundation (JMS) and P30 CA125123 (CJC). We thank Fengju Chen for technical assistance. We also thank Dr Brekken (UT southwestern Medical Center) for providing VEGFR-2 blocking antibody 2C3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Slingerland.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Pan, C., Sun, J. et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 34, 3107–3119 (2015). https://doi.org/10.1038/onc.2014.257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.257

This article is cited by

Search

Quick links