Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNF11 is a GGA protein cargo and acts as a molecular adaptor for GGA3 ubiquitination mediated by Itch

Subjects

Abstract

Ring finger protein 11 (RNF11) is a RING (really interesting new gene)-H2 E3 ligase that is overexpressed in several human tumor tissues. The mature protein, which is anchored to membranes via a double acylation, localizes to early endosome and recycling compartments. Apart from its subcellular localization, additional lines of evidence implicate RNF11 in the mechanisms underlying vesicle traffic. Here we identify two acidic-cluster dileucine (Ac-LL) motifs, which are recognized by the VHS domains of Golgi-localized, gamma adaptin era-containing, ADP-ribosylation factor-binding protein (GGA) adaptors, as the molecular determinants governing RNF11 sorting at the trans-Golgi network and its internalization from the plasma membrane. We also show that RNF11 recruits itch to drive the ubiquitination of GGA3. This function is experimentally detectable only in cells overexpressing an RNF11 variant that is inactivated in the RING domain, indicating that RNF11 recruits GGA3 and controls its ubiquitination by regulating itch activity. Accordingly, our data demonstrate the involvement of itch in regulating GGA3 stability. Indeed, we observe that the endogenous levels of GGA3 are increased in cells knocked down for itch and endogenous GGA3 is hyperubiquitinated in an itch-dependent manner in a cell line expressing catalytically inactive RNF11. Our data are consistent with a model whereby the RING E3 ligase RNF11 is a novel GGA cargo actively participating in regulating the ubiquitination of the GGA protein family. The results that we are presenting put RNF11 at the center of a finally regulated system where it acts both as an adaptor and a modulator of itch-mediated control of ubiquitination events underlying membrane traffic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Bonifacino JS, Lippincott-Schwartz J . Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 2003; 4: 409–414.

    Article  CAS  Google Scholar 

  2. Bonifacino JS, Traub LM . Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 2003; 72: 395–447.

    Article  CAS  Google Scholar 

  3. Boman AL, Zhang CJ, Zhu X, Kahn RA . A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol Biol Cell 2000; 11: 1241–1255.

    Article  CAS  Google Scholar 

  4. Dell'Angelica EC, Puertollano R, Mullins C, Aguilar RC, Vargas JD, Hartnell LM . GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 2000; 149: 81–94.

    Article  CAS  Google Scholar 

  5. Hirst J, Lui WW, Bright NA, Totty N, Seaman MN, Robinson MS . A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J Cell Biol 2000; 149: 67–80.

    Article  CAS  Google Scholar 

  6. Takatsu H, Yoshino K, Nakayama K . Adaptor gamma ear homology domain conserved in gamma-adaptin and GGA proteins that interact with gamma-synergin. Biochem Biophys Res Commun 2000; 271: 719–725.

    Article  CAS  Google Scholar 

  7. Jacobsen L, Madsen P, Nielsen MS, Geraerts WPM, Gliemann J, Smit AB . The sorLA cytoplasmic domain interacts with GGA1 and -2 and defines minimum requirements for GGA binding. FEBS Lett 2002; 511: 155–158.

    Article  CAS  Google Scholar 

  8. Misra S, Puertollano R, Kato Y, Bonifacino JS, Hurley JH . Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 2002; 415: 933–937.

    Article  CAS  Google Scholar 

  9. Ghosh P, Kornfeld S . The GGA proteins: key players in protein sorting at the trans-Golgi network. Eur J Cell Biol 2004; 83: 257–262.

    Article  CAS  Google Scholar 

  10. Bonifacino JS . The GGA proteins: adaptors on the move. Nat Rev Mol Cell Biol 2004; 5: 23–32.

    Article  CAS  Google Scholar 

  11. Doray B, Misra S, Qian Y, Brett TJ, Kornfeld S . Do GGA adaptors bind internal DXXLL motifs? Traffic 2012; 13: 1315–1325.

    Article  CAS  Google Scholar 

  12. Shiba Y, Katoh Y, Shiba T, Yoshino K, Takatsu H, Kobayashi H . GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination. J Biol Chem 2004; 279: 7105–7111.

    Article  CAS  Google Scholar 

  13. Scott PM, Bilodeau PS, Zhdankina O, Winistorfer SC, Hauglund MJ, Allaman MM . GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat Cell Biol 2004; 6: 252–259.

    Article  CAS  Google Scholar 

  14. Puertollano R, Bonifacino JS . Interactions of GGA3 with the ubiquitin sorting machinery. Nat Cell Biol 2004; 6: 244–251.

    Article  CAS  Google Scholar 

  15. Puertollano R, Randazzo PA, Presley JF, Hartnell LM, Bonifacino JS . The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 2001; 105: 93–102.

    Article  CAS  Google Scholar 

  16. Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, Bonifacino JS . Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 2001; 292: 1712–1716.

    Article  CAS  Google Scholar 

  17. Zhu Y, Doray B, Poussu A, Lehto VP, Kornfeld S . Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 2001; 292: 1716–1718.

    Article  CAS  Google Scholar 

  18. Takatsu H, Katoh Y, Shiba Y, Nakayama K . Golgi-localizing, gamma-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J Biol Chem 2001; 276: 28541–28545.

    Article  CAS  Google Scholar 

  19. Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D . The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 2001; 20: 2180–2190.

    Article  CAS  Google Scholar 

  20. He X, Chang W-P, Koelsch G, Tang J . Memapsin 2 (beta-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: implications on the endocytosis mechanism of memapsin 2. FEBS Lett 2002; 524: 183–187.

    Article  CAS  Google Scholar 

  21. Boucher R, Larkin H, Brodeur J, Gagnon H, Thériault C, Lavoie C . Intracellular trafficking of LRP9 is dependent on two acidic cluster/dileucine motifs. Histochem Cell Biol 2008; 130: 315–327.

    Article  CAS  Google Scholar 

  22. Santonico E, Belleudi F, Panni S, Torrisi MR, Cesareni G, Castagnoli L . Multiple modification and protein interaction signals drive the Ring finger protein 11 (RNF11) E3 ligase to the endosomal compartment. Oncogene 2010; 29: 5604–5618.

    Article  CAS  Google Scholar 

  23. Burger AM, Zhang X, Li H, Ostrowski JL, Beatty B, Venanzoni M . Down-regulation of T1A12/mac25, a novel insulin-like growth factor binding protein related gene, is associated with disease progression in breast carcinomas. Oncogene 1998; 16: 2459–2467.

    Article  CAS  Google Scholar 

  24. Seki N, Hattori A, Hayashi A, Kozuma S, Sasaki M, Suzuki Y . Cloning and expression profile of mouse and human genes, Rnf11/RNF11, encoding a novel RING-H2 finger protein. Biochim Biophys Acta 1999; 1489: 421–427.

    Article  CAS  Google Scholar 

  25. Sudol M, Hunter T . NeW wrinkles for an old domain. Cell 2000; 103: 1001–1004.

    Article  CAS  Google Scholar 

  26. Kitching R, Wong MJ, Koehler D, Burger AM, Landberg G, Gish G . The RING-H2 protein RNF11 is differentially expressed in breast tumours and interacts with HECT-type E3 ligases. Biochim Biophys Acta 2003; 1639: 104–112.

    Article  CAS  Google Scholar 

  27. Bernassola F, Karin M, Ciechanover A, Melino G . The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 2008; 14: 10–21.

    Article  CAS  Google Scholar 

  28. van Wijk SJL, Timmers HTM . The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 2010; 24: 981–993.

    Article  CAS  Google Scholar 

  29. Li H, Seth A . An RNF11: Smurf2 complex mediates ubiquitination of the AMSH protein. Oncogene 2004; 23: 1801–1808.

    Article  CAS  Google Scholar 

  30. Azmi P, Seth A . RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. Eur J Cancer 2005; 41: 2549–2560.

    Article  CAS  Google Scholar 

  31. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW . The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J 2009; 28: 513–522.

    Article  CAS  Google Scholar 

  32. Kostaras E, Sflomos G, Pedersen NM, Stenmark H, Fotsis T, Murphy C . SARA and RNF11 interact with each other and ESCRT-0 core proteins and regulate degradative EGFR trafficking. Oncogene 2013; 32: 5220–5232.

    Article  CAS  Google Scholar 

  33. Frank R . The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 2002; 267: 13–26.

    Article  CAS  Google Scholar 

  34. Pastorino L, Ikin AF, Nairn AC, Pursnani A, Buxbaum JD . The carboxyl-terminus of BACE contains a sorting signal that regulates BACE trafficking but not the formation of total A(beta). Mol Cell Neurosci 2002; 19: 175–185.

    Article  CAS  Google Scholar 

  35. Huse JT, Pijak DS, Leslie GJ, Lee VM, Doms RW . Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer's disease beta-secretase. J Biol Chem 2000; 275: 33729–33737.

    Article  CAS  Google Scholar 

  36. Simons K, Zerial M . Rab proteins and the road maps for intracellular transport. Neuron 1993; 11: 789–799.

    Article  CAS  Google Scholar 

  37. Mattera R, Boehm M, Chaudhuri R, Prabhu Y, Bonifacino JS . Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. J Biol Chem 2011; 286: 2022–2030.

    Article  CAS  Google Scholar 

  38. Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius K-J, Jarvius J . Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995–1000.

    Article  Google Scholar 

  39. Söderberg O, Leuchowius K-J, Gullberg M, Jarvius M, Weibrecht I, Larsson L-G . Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 2008; 45: 227–232.

    Article  Google Scholar 

  40. Weibrecht I, Leuchowius K-J, Clausson C-M, Conze T, Jarvius M, Howell WM . Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics 2010; 7: 401–409.

    Article  CAS  Google Scholar 

  41. Damke H, Baba T, Warnock DE, Schmid SL . Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 1994; 127: 915–934.

    Article  CAS  Google Scholar 

  42. Hicke L . Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001; 2: 195–201.

    Article  CAS  Google Scholar 

  43. Hoppe T . Multiubiquitylation by E4 enzymes: 'one size‘ doesn’t fit all. Trends Biochem Sci 2005; 30: 183–187.

    Article  CAS  Google Scholar 

  44. Pak Y, Glowacka WK, Bruce MC, Pham N, Rotin D . Transport of LAPTM5 to lysosomes requires association with the ubiquitin ligase Nedd4, but not LAPTM5 ubiquitination. J Cell Biol 2006; 175: 631–645.

    Article  CAS  Google Scholar 

  45. Oberst A, Malatesta M, Aqeilan RI, Rossi M, Salomoni P, Murillas R . The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc Natl Acad Sci USA 2007; 104: 11280–11285.

    Article  CAS  Google Scholar 

  46. Parachoniak CA, Luo Y, Abella JV, Keen JH, Park M . GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell 2011; 20: 751–763.

    Article  CAS  Google Scholar 

  47. Clague MJ . Met receptor: a moving target. Sci Signal 2011; 4: pe40.

    Article  Google Scholar 

  48. Chen C, Zhou Z, Liu R, Li Y, Azmi PB, Seth AK . The WW domain containing E3 ubiquitin protein ligase 1 upregulates ErbB2 and EGFR through RING finger protein 11. Oncogene 2008; 27: 6845–6855.

    Article  CAS  Google Scholar 

  49. Burger A, Amemiya Y, Kitching R, Seth AK . Novel RING E3 ubiquitin ligases in breast cancer. Neoplasia 2006; 8: 689–695.

    Article  CAS  Google Scholar 

  50. Santonico E, Panni S, Falconi M, Castagnoli L, Cesareni G . Binding to DPF-motif by the POB1 EH domain is responsible for POB1-Eps15 interaction. BMC Biochem 2007; 8: 29.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Elena Romano and Dr Palma Mattioli of the Centre of Advanced Microscopy (CAM) of Tor Vergata University for their skillful assistance in the use of the facility. We thank Juan Bonifacino (National Institutes of Health, Bethesda, MD, USA) for the generous gifts of myc-GGA1, GGA2 and GGA3 expression vectors and Marino Zerial (Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany) for providing the GFP constructs for Rab4, Rab5, Rab7 and Rab11. A special thanks to Natalia Speranzini for generating stable cell lines and to Gemma Biondo, Anita Palma and Daniela Posca for technical support. This work was partially supported by grants from MIUR and from AIRC—Associazione Italiana per la Ricerca sul Cancro (IG 10272), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Santonico.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santonico, E., Mattioni, A., Panni, S. et al. RNF11 is a GGA protein cargo and acts as a molecular adaptor for GGA3 ubiquitination mediated by Itch. Oncogene 34, 3377–3390 (2015). https://doi.org/10.1038/onc.2014.256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.256

This article is cited by

Search

Quick links