Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis

Subjects

Abstract

The tyrosine kinase WEE1 controls the timing of entry into mitosis in eukaryotes and its genetic deletion leads to pre-implantation lethality in mice. Here, we show that besides the premature mitotic entry phenotype, Wee1 mutant murine cells fail to complete mitosis properly and exhibit several additional defects that contribute to the deregulation of mitosis, allowing mutant cells to progress through mitosis at the expense of genomic integrity. WEE1 interacts with the anaphase promoting complex, functioning as a negative regulator, and the deletion of Wee1 results in hyper-activation of this complex. Mammary specific knockout mice overcome the DNA damage response pathway triggered by the mis-coordination of the cell cycle in mammary epithelial cells and heterozygote mice spontaneously develop mammary tumors. Thus, WEE1 functions as a haploinsufficient tumor suppressor that coordinates distinct cell division events to allow correct segregation of genetic information into daughter cells and maintain genome integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nurse P . Genetic control of cell size at cell division in yeast. Nature 1975; 256: 547–551.

    Article  CAS  PubMed  Google Scholar 

  2. Thuriaux P, Nurse P, Carter B . Mutants altered in the control co-ordinating cell division with cell growth in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 1978; 161: 215–220.

    Article  CAS  PubMed  Google Scholar 

  3. Fantes PA, Nurse P . Control of the timing of cell division in fission yeast. Cell size mutants reveal a second control pathway. Exp Cell Res 1978; 115: 317–329.

    Article  CAS  PubMed  Google Scholar 

  4. Squire CJ, Dickson JM, Ivanovic I, Baker EN . Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Structure 2005; 13: 541–550.

    Article  CAS  PubMed  Google Scholar 

  5. Featherstone C, Russell P . Fission yeast p107wee1 mitotic inhibitor is a tyrosine/serine kinase. Nature 1991; 349: 808–811.

    Article  CAS  PubMed  Google Scholar 

  6. Gould KL, Nurse P . Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 1989; 342: 39–45.

    Article  CAS  PubMed  Google Scholar 

  7. Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D . mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 1991; 64: 1111–1122.

    Article  CAS  PubMed  Google Scholar 

  8. Parker LL, Atherton-Fessler S, Piwnica-Worms H . p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci USA 1992; 89: 2917–2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parker LL, Piwnica-Worms H . Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 1992; 257: 1955–1957.

    Article  CAS  PubMed  Google Scholar 

  10. Parker LL, Sylvestre PJ, Byrnes MJ 3rd, Liu F, Piwnica-Worms H . Identification of a 95-kDa WEE1-like tyrosine kinase in HeLa cells. Proc Natl Acad Sci USA 1995; 92: 9638–9642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dunphy WG, Kumagai A . The cdc25 protein contains an intrinsic phosphatase activity. Cell 1991; 67: 189–196.

    Article  CAS  PubMed  Google Scholar 

  12. Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW . cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 1991; 67: 197–211.

    Article  CAS  PubMed  Google Scholar 

  13. Kumagai A, Dunphy WG . The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 1991; 64: 903–914.

    Article  CAS  PubMed  Google Scholar 

  14. Millar JB, McGowan CH, Lenaers G, Jones R, Russell P . p80cdc25 mitotic inducer is the tyrosine phosphatase that activates p34cdc2 kinase in fission yeast. EMBO J 1991; 10: 4301–4309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strausfeld U, Labbe JC, Fesquet D, Cavadore JC, Picard A, Sadhu K et al. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 1991; 351: 242–245.

    Article  CAS  PubMed  Google Scholar 

  16. Stumpff J, Kellogg DR, Krohne KA, Su TT . Drosophila Wee1 interacts with members of the gammaTURC and is required for proper mitotic-spindle morphogenesis and positioning. Curr Biol 2005; 15: 1525–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deng CX . BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 2006; 34: 1416–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Negrini S, Gorgoulis VG, Halazonetis TD . Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11: 220–228.

    Article  CAS  PubMed  Google Scholar 

  19. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  20. Kastan MB, Bartek J . Cell-cycle checkpoints and cancer. Nature 2004; 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  21. Lukas J, Lukas C, Bartek J . Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 2004; 3: 997–1007.

    Article  CAS  Google Scholar 

  22. Indovina P, Marcelli E, Di Marzo D, Casini N, Forte IM, Giorgi F et al. Abrogating G /M checkpoint through WEE1 inhibition in combination with chemotherapy as a promising therapeutic approach for mesothelioma. Cancer Biol Ther 2013; 15: 380–388.

    Article  Google Scholar 

  23. Simanski S, Madoux F, Rahaim RJ, Chase P, Schurer S, Cameron M et al. Identification of Small Molecule Inhibitors of Wee1 Degradation and Mitotic Entry. Probe Reports from the NIH Molecular Libraries Program: NIH, Bethesda, MD, USA, 2010.

    Google Scholar 

  24. Towler WI, Zhang J, Ransburgh DJ, Toland AE, Ishioka C, Chiba N et al. Analysis of BRCA1 variants in double-strand break repair by homologous recombination and single-strand annealing. Hum Mutat 2013; 34: 439–445.

    Article  CAS  PubMed  Google Scholar 

  25. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  26. Michael D, Oren M . The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 2002; 12: 53–59.

    Article  CAS  PubMed  Google Scholar 

  27. Dixon H, Norbury CJ . Therapeutic exploitation of checkpoint defects in cancer cells lacking p53 function. Cell Cycle 2002; 1: 362–368.

    Article  CAS  PubMed  Google Scholar 

  28. Bucher N, Britten CD . G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer 2008; 98: 523–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawabe T . G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 2004; 3: 513–519.

    CAS  PubMed  Google Scholar 

  30. Peters JM . The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 2006; 7: 644–656.

    Article  CAS  PubMed  Google Scholar 

  31. Pines J . The APC/C: a smorgasbord for proteolysis. Mol Cell 2009; 34: 135–136.

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Zhang P . The function of APC/CCdh1 in cell cycle and beyond. Cell Div 2009; 4: 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pines J . Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol 2006; 16: 55–63.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Higuera I, Manchado E, Dubus P, Canamero M, Mendez J, Moreno S et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 2008; 10: 802–811.

    Article  PubMed  CAS  Google Scholar 

  35. Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 2011; 20: 487–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saeki T, Ouchi M, Ouchi T . Physiological and oncogenic Aurora-A pathway. Int J Biol Sci 2009; 5: 758–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmit TL, Zhong W, Nihal M, Ahmad N . Polo-like kinase 1 (Plk1) in non-melanoma skin cancers. Cell Cycle 2009; 8: 2697–2702.

    Article  CAS  PubMed  Google Scholar 

  38. Tominaga Y, Li C, Wang RH, Deng CX . Murine Wee1 plays a critical role in cell cycle regulation and pre-implantation stages of embryonic development. Int J Biol Sci 2006; 2: 161–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heald R, McLoughlin M, McKeon F . Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 1993; 74: 463–474.

    Article  CAS  PubMed  Google Scholar 

  40. Timofeev O, Cizmecioglu O, Settele F, Kempf T, Hoffmann I . Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition. J Biol Chem 2010; 285: 16978–16990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trovesi C, Falcettoni M, Lucchini G, Clerici M, Longhese MP . Distinct Cdk1 requirements during single-strand annealing, noncrossover, and crossover recombination. PLoS Genet 2011; 7: e1002263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Engelbert D, Schnerch D, Baumgarten A, Wasch R . The ubiquitin ligase APC(Cdh1) is required to maintain genome integrity in primary human cells. Oncogene 2008; 27: 907–917.

    Article  CAS  PubMed  Google Scholar 

  43. DePinho RA . The age of cancer. Nature 2000; 408: 248–254.

    Article  CAS  PubMed  Google Scholar 

  44. Murray AW, Solomon MJ, Kirschner MW . The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 1989; 339: 280–286.

    Article  CAS  PubMed  Google Scholar 

  45. Lianga N, Williams EC, Kennedy EK, Dore C, Pilon S, Girard SL et al. A Wee1 checkpoint inhibits anaphase onset. J Cell Biol 2013; 201: 843–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harvey SL, Charlet A, Haas W, Gygi SP, Kellogg DR . Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 2005; 122: 407–420.

    Article  CAS  PubMed  Google Scholar 

  47. Simpson-Lavy KJ, Brandeis M . Clb2 and the APC/C(Cdh1) regulate Swe1 stability. Cell Cycle 2010; 9: 3046–3053.

    Article  CAS  PubMed  Google Scholar 

  48. van Vugt MA, Bras A, Medema RH . Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 2004; 15: 799–811.

    Article  CAS  PubMed  Google Scholar 

  49. Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T et al. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 2011; 17: 2799–2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N et al. MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther 2010; 9: 514–522.

    Article  CAS  PubMed  Google Scholar 

  51. Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 2009; 8: 2992–3000.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Decker SJ, Sebolt-Leopold J . Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 2004; 3: 305–313.

    Article  CAS  PubMed  Google Scholar 

  53. Posthumadeboer J, Wurdinger T, Graat HC, van Beusechem VW, Helder MN, van Royen BJ et al. WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer 2011; 11: 156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res 2001; 61: 8211–8217.

    CAS  PubMed  Google Scholar 

  55. Iorns E, Lord CJ, Grigoriadis A, McDonald S, Fenwick K, Mackay A et al. Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS ONE 2009; 4: e5120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 2010; 18: 244–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dine J, Deng CX . Mouse models of BRCA1 and their application to breast cancer research. Cancer Metastasis Rev 2013; 32: 25–37.

    Article  CAS  PubMed  Google Scholar 

  58. Robinson GW, Hennighausen L . MMTV-Cre transgenes can adversely affect lactation: considerations for conditional gene deletion in mammary tissue. Anal Biochem 2011; 412: 92–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 1997; 25: 4323–4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hayashi S, McMahon AP . Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 2002; 244: 305–318.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the critical reading and helpful discussion of members of the Deng laboratory. This work was supported in part by the Intramural Research Program of the NIDDK, NCI and CCR, NIH. DG is supported by 1R01CA152601-01 from the NCI, BC093803 from the DOD, SPORE P50CA98131 and a Hirshberg Foundation for Pancreatic Cancer Research Seed Grant Award. Melissa Stauffer, PhD, of Scientific Editing Solutions, provided editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-X Deng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassilopoulos, A., Tominaga, Y., Kim, HS. et al. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene 34, 3023–3035 (2015). https://doi.org/10.1038/onc.2014.239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.239

This article is cited by

Search

Quick links