Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lineage-specific RUNX3 hypomethylation marks the preneoplastic immune component of gastric cancer

Abstract

Runt domain transcription factor 3 (RUNX 3) is widely regarded as a tumour-suppressor gene inactivated by DNA hypermethylation of its canonical CpG (cytidine-phosphate-guanidine) island (CGI) promoter in gastric cancer (GC). Absence of RUNX3 expression from normal gastric epithelial cells (GECs), the progenitors to GC, coupled with frequent RUNX3 overexpression in GC progression, challenge this longstanding paradigm. However, epigenetic models to better describe RUNX3 deregulation in GC have not emerged. Here, we identify lineage-specific DNA methylation at an alternate, non-CGI promoter (P1) as a new mechanism of RUNX3 epigenetic control. In normal GECs, P1 was hypermethylated and repressed, whereas in immune lineages P1 was hypomethylated and widely expressed. In human GC development, we detected aberrant P1 hypomethylation signatures associated with the early inflammatory, preneoplastic and tumour stages. Aberrant P1 hypomethylation was fully recapitulated in mouse models of gastric inflammation and tumorigenesis. Cell sorting showed that P1 hypomethylation reflects altered cell-type composition of the gastric epithelium/tumour microenvironment caused by immune cell recruitment, not methylation loss. Finally, via long-term culture of gastric tumour epithelium, we revealed that de novo methylation of the RUNX3 canonical CGI promoter is a bystander effect of oncogenic immortalization and not likely causal in GC pathogenesis as previously argued. We propose a new model of RUNX3 epigenetic control in cancer, based on immune-specific, non-CGI promoter hypomethylation. This novel epigenetic signature may have utility in early detection of GC and possibly other epithelial cancers with premalignant immune involvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer: Lyon, France, 2013.

    Google Scholar 

  2. Yeoh KG . How do we improve outcomes for gastric cancer? J Gastroenterol Hepatol 2007; 22: 970–972.

    Article  PubMed  Google Scholar 

  3. Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M . A model for gastric cancer epidemiology. Lancet 1975; 2: 58–60.

    Article  CAS  PubMed  Google Scholar 

  4. Schier S, Wright NA . Stem cell relationships and the origin of gastrointestinal cancer. Oncology 2005; 69 (Suppl 1): 9–13.

    Article  PubMed  Google Scholar 

  5. Hoffmann W . Self-renewal of the gastric epithelium from stem and progenitor cells. Front Biosci (Schol Ed) 2013; 5: 720–731.

    Article  Google Scholar 

  6. Peterson AJ, Menheniott TR, O'Connor L, Walduck AK, Fox JG, Kawakami K et al. Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 2010; 139: 2005–2017.

    Article  CAS  PubMed  Google Scholar 

  7. Schmid CA, Muller A . FoxD3 is a novel, epigenetically regulated tumor suppressor in gastric carcinogenesis. Gastroenterology 2013; 144: 22–25.

    Article  PubMed  Google Scholar 

  8. Ehrlich M . DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21: 5400–5413.

    Article  CAS  PubMed  Google Scholar 

  9. Clark SJ, Melki J . DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene 2002; 21: 5380–5387.

    Article  CAS  PubMed  Google Scholar 

  10. Sproul D, Nestor C, Culley J, Dickson JH, Dixon JM, Harrison DJ et al. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci USA 2011; 108: 4364–4369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dedeurwaerder S, Fuks F . DNA methylation markers for breast cancer prognosis: unmasking the immune component. Oncoimmunology 2012; 1: 962–964.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007; 39: 457–466.

    Article  CAS  PubMed  Google Scholar 

  13. Schmidl C, Klug M, Boeld TJ, Andreesen R, Hoffmann P, Edinger M et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res 2009; 19: 1165–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dedeurwaerder S, Desmedt C, Calonne E, Singhal SK, Haibe-Kains B, Defrance M et al. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med 2011; 3: 726–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 2005; 37: 899–905.

    Article  CAS  PubMed  Google Scholar 

  16. Westendorf JJ, Hiebert SW . Mammalian runt-domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. J Cell Biochem 1999; (Suppl 32-33): 51–58.

    Article  Google Scholar 

  17. Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 2004; 14: 1–41.

    Article  CAS  PubMed  Google Scholar 

  18. Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 2002; 21: 3454–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woolf E, Xiao C, Fainaru O, Lotem J, Rosen D, Negreanu V et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci USA 2003; 100: 7731–7736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 2002; 111: 621–633.

    Article  CAS  PubMed  Google Scholar 

  21. Fainaru O, Woolf E, Lotem J, Yarmus M, Brenner O, Goldenberg D et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J 2004; 23: 969–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lai CB, Mager DL . Role of runt-related transcription factor 3 (RUNX3) in transcription regulation of natural cytotoxicity receptor 1 (NCR1/NKp46), an activating natural killer (NK) cell receptor. J Biol Chem 2012; 287: 7324–7334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levanon D, Negreanu V, Lotem J, Bone KR, Brenner O, Leshkowitz D et al. Runx3 regulates interleukin-15 dependent natural killer cell activation. Mol Cell Biol 2014; 34: 1158–1169.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002; 109: 113–124.

    Article  CAS  PubMed  Google Scholar 

  25. Fan XY, Hu XL, Han TM, Wang NN, Zhu YM, Hu W et al. Association between RUNX3 promoter methylation and gastric cancer: a meta-analysis. BMC Gastroenterol 2011; 11: 92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Subramaniam MM, Chan JY, Yeoh KG, Quek T, Ito K, Salto-Tellez M . Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta 2009; 1796: 315–331.

    CAS  PubMed  Google Scholar 

  27. Levanon D, Bernstein Y, Negreanu V, Bone KR, Pozner A, Eilam R et al. Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Mol Med 2011; 3: 593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han HC et al. RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene 2006; 25: 7646–7649.

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Kleeff J, Guweidhi A, Esposito I, Berberat PO, Giese T et al. RUNX3 expression in primary and metastatic pancreatic cancer. J Clin Pathol 2004; 57: 294–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kudo Y, Tsunematsu T, Takata T . Oncogenic role of RUNX3 in head and neck cancer. J Cell Biochem 2011; 112: 387–393.

    Article  CAS  PubMed  Google Scholar 

  31. Hu SL, Huang DB, Sun YB, Wu L, Xu WP, Yin S et al. Pathobiologic implications of methylation and expression status of Runx3 and CHFR genes in gastric cancer. Med Oncol 2011; 28: 447–454.

    Article  CAS  PubMed  Google Scholar 

  32. Gardiner-Garden M, Frommer M . CpG islands in vertebrate genomes. J Mol Biol 1987; 196: 261–282.

    Article  CAS  PubMed  Google Scholar 

  33. Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G . DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet 2011; 20: 4299–4310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jackson CB, Judd LM, Menheniott TR, Kronborg I, Dow C, Yeomans ND et al. Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol 2007; 213: 140–151.

    Article  CAS  PubMed  Google Scholar 

  35. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ . Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 2007; 35: e119.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Biondo M, Nasa Z, Marshall A, Toh BH, Alderuccio F . Local transgenic expression of granulocyte macrophage-colony stimulating factor initiates autoimmunity. J Immunol 2001; 166: 2090–2099.

    Article  CAS  PubMed  Google Scholar 

  37. Judd LM, Alderman BM, Howlett M, Shulkes A, Dow C, Moverley J et al. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 2004; 126: 196–207.

    Article  CAS  PubMed  Google Scholar 

  38. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 2006; 38: 149–153.

    Article  CAS  PubMed  Google Scholar 

  39. Smiraglia DJ, Rush LJ, Fruhwald MC, Dai Z, Held WA, Costello JF et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet 2001; 10: 1413–1419.

    Article  CAS  PubMed  Google Scholar 

  40. Landan G, Cohen NM, Mukamel Z, Bar A, Molchadsky A, Brosh R et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet 2012; 44: 1207–1214.

    Article  CAS  PubMed  Google Scholar 

  41. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007; 39: 232–236.

    Article  CAS  PubMed  Google Scholar 

  42. Fujii S, Ito K, Ito Y, Ochiai A . Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 2008; 283: 17324–17332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37: 853–862.

    Article  CAS  PubMed  Google Scholar 

  44. Esteller M, Corn PG, Baylin SB, Herman JG . A gene hypermethylation profile of human cancer. Cancer Res 2001; 61: 3225–3229.

    CAS  PubMed  Google Scholar 

  45. So K, Tamura G, Honda T, Homma N, Endoh M, Togawa N et al. Quantitative assessment of RUNX3 methylation in neoplastic and non-neoplastic gastric epithelia using a DNA microarray. Pathol Int 2006; 56: 571–575.

    Article  CAS  PubMed  Google Scholar 

  46. Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E et al. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci USA 2004; 101: 16016–16021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sugai M, Aoki K, Osato M, Nambu Y, Ito K, Taketo MM et al. Runx3 is required for full activation of regulatory T cells to prevent colitis-associated tumor formation. J Immunol 2011; 186: 6515–6520.

    Article  CAS  PubMed  Google Scholar 

  48. Whitehead RH . Establishment of cell lines from colon carcinoma. In: Freshney IR (ed). Culture of Human Tumor Cells. John Wiley and Sons: New York, NY, USA, 2003, pp 68–80.

    Google Scholar 

  49. Huber M, Helgason CD, Damen JE, Liu L, Humphries RK, Krystal G . The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proc Natl Acad Sci USA 1998; 95: 11330–11335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalesnikoff J, Galli SJ . Antiinflammatory and immunosuppressive functions of mast cells. Methods Mol Biol 2011; 677: 207–220.

    Article  CAS  PubMed  Google Scholar 

  51. Menheniott TR, Peterson AJ, O'Connor L, Lee KS, Kalantzis A, Kondova I et al. A novel gastrokine, Gkn3, marks gastric atrophy and shows evidence of adaptive gene loss in humans. Gastroenterology 2010; 138: 1823–1835.

    Article  CAS  PubMed  Google Scholar 

  52. Levanon D, Brenner O, Negreanu V, Bettoun D, Woolf E, Eilam R et al. Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mech Dev 2001; 109: 413–417.

    Article  CAS  PubMed  Google Scholar 

  53. Lee KS, Kalantzis A, Jackson CB, O'Connor L, Murata-Kamiya N, Hatakeyama M et al. Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3gamma via gastric STAT3 activation. PLoS ONE 2012; 7: e30786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Y Groner and Dr D Levanon (The Weizmann Institute of Science, Rehovot, Israel) for their gift of anti-Runx3 antiserum and critical reviews of the manuscript. We thank Professor I van Driel (University of Melbourne, Australia) for providing H+/K+ ATPase-gmcsf transgenic mice and Professor M Ernst (Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia) for providing gp130F/F mice. We thank Dr J Däbritz (Murdoch Children’s Research Institute) for critically reviewing the manuscript. This work was supported by a project grant (1006542) awarded to TRM by the National Health and Medical Research Council (NH&MRC) of Australia and by the Victorian Government’s Medical Research Operational Infrastructure Program.

Author Contributions

TRM, ASG, LMJ and JRM conceived, designed and led the study. BK, TRM, EK and RHW performed the experiments. BK and TRM analysed the data. TM and JGF contributed reagents and materials. TRM and BK wrote the manuscript. TRM, ASG, LMJ and JRM edited and revised the manuscript. All authors approved the final version of the manuscript before submission

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T R Menheniott.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurklu, B., Whitehead, R., Ong, E. et al. Lineage-specific RUNX3 hypomethylation marks the preneoplastic immune component of gastric cancer. Oncogene 34, 2856–2866 (2015). https://doi.org/10.1038/onc.2014.233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.233

This article is cited by

Search

Quick links