Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of BMP signaling suppresses metastasis in mammary cancer

Abstract

Bone morphogenetic proteins (BMPs) are secreted cytokines/growth factors that have differing roles in cancer. BMPs are overexpressed in human breast cancers, but loss of BMP signaling in mammary carcinomas can accelerate metastasis. We show that human breast cancers display active BMP signaling, which is rarely downregulated or homozygously deleted. We hypothesized that systemic inhibition of BMP signaling in both the tumor and the surrounding microenvironment could prevent tumor progression and metastasis. To test this hypothesis, we used DMH1, a BMP antagonist, in MMTV.PyVmT expressing mice. Treatment with DMH1 reduced lung metastasis and the tumors were less proliferative and more apoptotic. In the surrounding tumor microenvironment, treatment with DMH1 altered fibroblasts, lymphatic vessels and macrophages to be less tumor promoting. These results indicate that inhibition of BMP signaling may successfully target both the tumor and the surrounding microenvironment to reduce tumor burden and metastasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Miyazono K, Kamiya Y, Morikawa M Bone morphogenetic protein receptors and signal transduction. J Biochem 2010; 147: 35–51.

    Article  CAS  Google Scholar 

  2. Chen D, Zhao M, Mundy GR Bone morphogenetic proteins. Growth Factors 2004; 22: 233–241.

    Article  CAS  Google Scholar 

  3. Goto K, Kamiya Y, Imamura T, Miyazono K, Miyazawa K Selective inhibitory effects of Smad6 on bone morphogenetic protein type I receptors. J Biol Chem 2007; 282: 20603–20611.

    Article  CAS  Google Scholar 

  4. Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 2001; 28: 184–187.

    Article  CAS  Google Scholar 

  5. Calva-Cerqueira D, Dahdaleh FS, Woodfield G, Chinnathambi S, Nagy PL, Larsen-Haidle J et al. Discovery of the BMPR1A promoter and germline mutations that cause juvenile polyposis. Hum Mol Genet 2010; 19: 4654–4662.

    Article  CAS  Google Scholar 

  6. Ming Kwan K, Li AG, Wang XJ, Wurst W, Behringer RR Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis 2004; 39: 10–25.

    Article  Google Scholar 

  7. Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 2004; 131: 2257–2268.

    Article  CAS  Google Scholar 

  8. Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol 2003; 163: 609–623.

    Article  CAS  Google Scholar 

  9. Yuhki M, Yamada M, Kawano M, Iwasato T, Itohara S, Yoshida H et al. BMPR1A signaling is necessary for hair follicle cycling and hair shaft differentiation in mice. Development 2004; 131: 1825–1833.

    Article  CAS  Google Scholar 

  10. Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012; 150: 764–779.

    Article  CAS  Google Scholar 

  11. Owens P, Pickup MW, Novitskiy SV, Chytil A, Gorska AE, Aakre ME et al. Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proc Natl Acad Sci USA 2012; 109: 2814–2819.

    Article  CAS  Google Scholar 

  12. Alarmo EL, Kallioniemi A . Bone morphogenetic proteins in breast cancer: dual role in tumourigenesis? Endocr Relat Cancer 2010; 17: R123–R139.

    Article  CAS  Google Scholar 

  13. Ehata S, Yokoyama Y, Takahashi K, Miyazono K . Bi-directional roles of bone morphogenetic proteins in cancer: another molecular Jekyll and Hyde? Pathol Int 2013; 63: 287–296.

    Article  CAS  Google Scholar 

  14. Ketolainen JM, Alarmo EL, Tuominen VJ, Kallioniemi A Parallel inhibition of cell growth and induction of cell migration and invasion in breast cancer cells by bone morphogenetic protein 4. Breast Cancer Res Treat 2010; 124: 377–386.

    Article  CAS  Google Scholar 

  15. Alarmo EL, Parssinen J, Ketolainen JM, Savinainen K, Karhu R, Kallioniemi A BMP7 influences proliferation, migration, and invasion of breast cancer cells. Cancer Lett 2009; 275: 35–43.

    Article  CAS  Google Scholar 

  16. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011; 145: 926–940.

    Article  CAS  Google Scholar 

  17. Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, Que I, Schwaninger R et al. Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res 2007; 67: 8742–8751.

    Article  CAS  Google Scholar 

  18. Yang S, Pham LK, Liao CP, Frenkel B, Reddi AH, Roy-Burman P A novel bone morphogenetic protein signaling in heterotypic cell interactions in prostate cancer. Cancer Res 2008; 68: 198–205.

    Article  CAS  Google Scholar 

  19. Owens P, Polikowsky H, Pickup MW, Gorska AE, Jovanovic B, Shaw AK et al. Bone morphogenetic proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion. PLoS ONE 2013; 8: e67533.

    Article  CAS  Google Scholar 

  20. Wiley DM, Kim JD, Hao J, Hong CC, Bautch VL, Jin SW Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol 2011; 13: 686–692.

    Article  Google Scholar 

  21. Lee JH, Lee GT, Woo SH, Ha YS, Kwon SJ, Kim WJ et al. BMP-6 in renal cell carcinoma promotes tumor proliferation through IL-10-dependent M2 polarization of tumor-associated macrophages. Cancer Res 2013; 73: 3604–3614.

    Article  CAS  Google Scholar 

  22. Lee GT, Jung YS, Lee JH, Kim WJ, Kim IY Bone morphogenetic protein 6-induced interleukin-1beta expression in macrophages requires PU.1/Smad1 interaction. Mol Immunol 2011; 48: 1540–1547.

    Article  CAS  Google Scholar 

  23. Lee GT, Kwon SJ, Lee JH, Jeon SS, Jang KT, Choi HY et al. Induction of interleukin-6 expression by bone morphogenetic protein-6 in macrophages requires both SMAD and p38 signaling pathways. J Biol Chem 2010; 285: 39401–39408.

    Article  CAS  Google Scholar 

  24. Hong JH, Lee GT, Lee JH, Kwon SJ, Park SH, Kim SJ et al. Effect of bone morphogenetic protein-6 on macrophages. Immunology 2009; 128: e442–e450.

    Article  Google Scholar 

  25. Balboni AL, Hutchinson JA, DeCastro AJ, Cherukuri P, Liby K, Sporn MB et al. DeltaNp63alpha-mediated activation of bone morphogenetic protein signaling governs stem cell activity and plasticity in normal and malignant mammary epithelial cells. Cancer Res 2013; 73: 1020–1030.

    Article  CAS  Google Scholar 

  26. Langenfeld E, Hong CC, Lanke G, Langenfeld J Bone morphogenetic protein type I receptor antagonists decrease growth and induce cell death of lung cancer cell lines. PLoS ONE 2013; 8: e61256.

    Article  CAS  Google Scholar 

  27. Lee YC, Cheng CJ, Bilen MA, Lu JF, Satcher RL, Yu-Lee LY et al. BMP4 promotes prostate tumor growth in bone through osteogenesis. Cancer Res 2011; 71: 5194–5203.

    Article  CAS  Google Scholar 

  28. Hao J, Ho JN, Lewis JA, Karim KA, Daniels RN, Gentry PR et al. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem Biol 2010; 5: 245–253.

    Article  CAS  Google Scholar 

  29. Hill CR, Sanchez NS, Love JD, Arrieta JA, Hong CC, Brown CB et al. BMP2 signals loss of epithelial character in epicardial cells but requires the Type III TGFbeta receptor to promote invasion. Cell Signal 2012; 24: 1012–1022.

    Article  CAS  Google Scholar 

  30. Cross EE, Thomason RT, Martinez M, Hopkins CR, Hong CC, Bader DM Application of small organic molecules reveals cooperative TGFbeta and BMP regulation of mesothelial cell behaviors. ACS Chem Biol 2011; 6: 952–961.

    Article  CAS  Google Scholar 

  31. Vogt J, Traynor R, Sapkota GP The specificities of small molecule inhibitors of the TGF-b and BMP pathways. Cell Signal 2011; 23: 1831–1842.

    Article  CAS  Google Scholar 

  32. Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chromosomes Cancer 2006; 45: 411–419.

    Article  CAS  Google Scholar 

  33. Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat 2007; 103: 239–246.

    Article  CAS  Google Scholar 

  34. Alarmo EL, Korhonen T, Kuukasjarvi T, Huhtala H, Holli K, Kallioniemi A Bone morphogenetic protein 7 expression associates with bone metastasis in breast carcinomas. Ann Oncol 2008; 19: 308–314.

    Article  Google Scholar 

  35. Alarmo EL, Huhtala H, Korhonen T, Pylkkanen L, Holli K, Kuukasjarvi T et al. Bone morphogenetic protein 4 expression in multiple normal and tumor tissues reveals its importance beyond development. Mod Pathol 2013; 26: 10–21.

    Article  CAS  Google Scholar 

  36. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  37. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  Google Scholar 

  38. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  Google Scholar 

  39. ten Dijke P, Hill CS New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004; 29: 265–273.

    Article  CAS  Google Scholar 

  40. Fluck MM, Schaffhausen BS . Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73: 542–563.

    Article  CAS  Google Scholar 

  41. Payne SL, Hendrix MJ, Kirschmann DA Paradoxical roles for lysyl oxidases in cancer—a prospect. J Cell Biochem 2007; 101: 1338–1354.

    Article  CAS  Google Scholar 

  42. Barker HE, Cox TR, Erler JT The rationale for targeting the LOX family in cancer. Nat Rev Cancer 2012; 12: 540–552.

    Article  CAS  Google Scholar 

  43. Hollosi P, Yakushiji JK, Fong KS, Csiszar K, Fong SF Lysyl oxidase-like 2 promotes migration in noninvasive breast cancer cells but not in normal breast epithelial cells. Int J Cancer 2009; 125: 318–327.

    Article  CAS  Google Scholar 

  44. Cox TR, Bird D, Baker AM, Barker HE, Ho MW, Lang G et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 2013; 73: 1721–1732.

    Article  CAS  Google Scholar 

  45. Chen JC, Chang YW, Hong CC, Yu YH, Su JL The Role of the VEGF-C/VEGFRs axis in tumor progression and therapy. Int J Mol Sci 2012; 14: 88–107.

    Article  Google Scholar 

  46. Su JL, Yen CJ, Chen PS, Chuang SE, Hong CC, Kuo IH et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer 2007; 96: 541–545.

    Article  CAS  Google Scholar 

  47. Laoui D, Movahedi K, Van Overmeire E, Van den Bossche J, Schouppe E, Mommer C et al. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int J Dev Biol 2011; 55: 861–867.

    Article  Google Scholar 

  48. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 2004; 36: 1117–1121.

    Article  CAS  Google Scholar 

  49. Nishimori H, Ehata S, Suzuki HI, Katsuno Y, Miyazono K Prostate cancer cells and bone stromal cells mutually interact with each other through bone morphogenetic protein-mediated signals. J Biol Chem 2012; 287: 20037–20046.

    Article  CAS  Google Scholar 

  50. Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 2008; 27: 6322–6333.

    Article  CAS  Google Scholar 

  51. Morrissey C, Brown LG, Pitts TE, Vessella RL, Corey E Bone morphogenetic protein 7 is expressed in prostate cancer metastases and its effects on prostate tumor cells depend on cell phenotype and the tumor microenvironment. Neoplasia 2010; 12: 192–205.

    Article  CAS  Google Scholar 

  52. Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res 2005; 65: 8274–8285.

    Article  CAS  Google Scholar 

  53. Rodriguez-Martinez A, Alarmo EL, Saarinen L, Ketolainen J, Nousiainen K, Hautaniemi S et al. Analysis of BMP4 and BMP7 signaling in breast cancer cells unveils time-dependent transcription patterns and highlights a common synexpression group of genes. BMC Med Genomics 2011; 4: 80.

    Article  CAS  Google Scholar 

  54. Kwon SJ, Lee GT, Lee JH, Kim WJ, Kim IY Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology 2009; 128: e758–e765.

    Article  Google Scholar 

  55. Pickup MW, Laklai H, Acerbi I, Owens P, Gorska AE, Chytil A et al. Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-beta deficient mouse mammary carcinoma. Cancer Res 2013; 73: 5336–5346.

    Article  CAS  Google Scholar 

  56. Owens P, Engelking E, Han G, Haeger SM, Wang XJ Epidermal Smad4 deletion results in aberrant wound healing. Am J Pathol 2010; 176: 122–133.

    Article  CAS  Google Scholar 

  57. Novitskiy SV, Pickup MW, Chytil A, Polosukhina D, Owens P, Moses HL Deletion of TGF-beta signaling in myeloid cells enhances their anti-tumorigenic properties. J Leukoc Biol 2012; 92: 641–651.

    Article  CAS  Google Scholar 

  58. Novitskiy SV, Pickup MW, Gorska AE, Owens P, Chytil A, Aakre M et al. TGF-beta receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov 2011; 1: 430–441.

    Article  CAS  Google Scholar 

  59. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Moses laboratory for critically reading the manuscript. We thank Dr Connor Lynch for help with tissue acquisition. PO has been supported by DoD BCRP postdoctoral fellowship grant number W81XWH-09-1-0421. CCH is supported by NIH/NHLBI grants RO1HL104040 and VA Merit Award # 101BX000771. This work is supported by NIH grants CA085492, CA102162, the Robert J and Helen C Kleberg Foundation and the TJ Martell Foundation to HLM. Grant number CA068485 provided core laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Owens.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owens, P., Pickup, M., Novitskiy, S. et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene 34, 2437–2449 (2015). https://doi.org/10.1038/onc.2014.189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.189

This article is cited by

Search

Quick links