Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear translocation of IGF-1R via p150Glued and an importin-β/RanBP2-dependent pathway in cancer cells

A Correction to this article was published on 08 December 2022

This article has been updated

Abstract

Mounting evidence has shown that the insulin-like growth factor-1 receptor (IGF-1R) has critical roles in cancer cell growth. This has prompted pharmacological companies to develop agents targeting the receptor. Surprisingly, clinical trials using specific IGF-1R antibodies have, however, revealed disappointing results. Further understanding of the role of IGF-1R in cancer cells is therefore necessary for development of efficient therapeutic strategies. Recently, we showed that IGF-1R is sumoylated and translocated into the cell nucleus where it activates gene transcription. Several other studies have confirmed our findings and it has been reported that nuclear IGF-1R (nIGF-1R) has prognostic and predictive impact in cancer. To increase the understanding of IGF-1R in cancer cells, we here present the first study that proposes a pathway by which IGF-1R translocates into the cell nucleus. We could demonstrate that IGF-1R first associates with the dynactin subunit p150Glued, which transports the receptor to the nuclear pore complex, where it co-localizes with importin-β followed by association with RanBP2. Sumoylation of IGF-1R seems to be required for interaction with RanBP2, which in turn may serve as the SUMO E3 ligase. In the context of sumoylation, we provided evidence that it may favor nIGF-1R accumulation by increasing the stability of the receptor. Taken together, topographic and functional interactions between dynactin, importin-β and RanBP2 are involved in nuclear translocation of IGF-1R. Our results provide new understanding of IGF-1R in cancer, which in turn may contribute to development of new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

References

  1. Baserga R . The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res 1995; 55: 249–252.

    CAS  PubMed  Google Scholar 

  2. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr . Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 1995; 16: 143–163.

    Article  CAS  PubMed  Google Scholar 

  3. Yu H, Rohan T . Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 2000; 92: 1472–1489.

    Article  CAS  PubMed  Google Scholar 

  4. Resnicoff M, Tjuvajev J, Rotman HL, Abraham D, Curtis M, Aiken R et al. Regression of C6 rat brain tumors by cells expressing an antisense insulin-like growth factor I receptor RNA. J Exp Ther Oncol 1996; 1: 385–389.

    CAS  PubMed  Google Scholar 

  5. Pollak M . The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012; 12: 159–169.

    Article  CAS  PubMed  Google Scholar 

  6. Baserga R . The decline and fall of the IGF-I receptor. J Cell Physiol 2013; 228: 675–679.

    Article  CAS  PubMed  Google Scholar 

  7. Sehat B, Tofigh A, Lin Y, Trocme E, Liljedahl U, Lagergren J et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal 2010; 3: ra10.

    Article  PubMed  Google Scholar 

  8. Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res. 2010; 70: 6412–6419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng H, Lin Y, Badin M, Vasilcanu D, Stromberg T, Jernberg-Wiklund H et al. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9. Biochem Biophys Res Commun 2011; 404: 667–671.

    Article  CAS  PubMed  Google Scholar 

  10. Warsito D, Sjostrom S, Andersson S, Larsson O, Sehat B . Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Rep 2012; 13: 244–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asmane I, Watkin E, Alberti L, Duc A, Marec-Berard P, Ray-Coquard I et al. Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: a predictive biomarker for IGF-1R monoclonal antibody (Ab) therapy in sarcomas. Eur J Cancer 2012; 48: 3027–3035.

    Article  CAS  PubMed  Google Scholar 

  12. Sarfstein R, Pasmanik-Chor M, Yeheskel A, Edry L, Shomron N, Warman N et al. Insulin-like growth factor-I receptor (IGF-IR) translocates to nucleus and autoregulates IGF-IR gene expression in breast cancer cells. J Biol Chem 2012; 287: 2766–2776.

    Article  CAS  PubMed  Google Scholar 

  13. Ibarra C, Vicencio JM, Estrada M, Lin Y, Rocco P, Rebellato P et al. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res 2013; 112: 236–245.

    Article  CAS  PubMed  Google Scholar 

  14. Wu YC, Zhu M, Robertson DM . Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells. PLoS ONE 2012; 7: e42483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Gaal JC, Roeffen MH, Flucke UE, van der Laak JA, van der Heijden G, de Bont ES et al. Simultaneous targeting of insulin-like growth factor-1 receptor and anaplastic lymphoma kinase in embryonal and alveolar rhabdomyosarcoma: A rational choice. Eur J Cancer 2013; 49: 3462–3470.

    Article  CAS  PubMed  Google Scholar 

  16. Gruenberg J, Griffiths G, Howell KE . Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J Cell Biol 1989; 108: 1301–1316.

    Article  CAS  PubMed  Google Scholar 

  17. Schroer TA, Sheetz MP . Two activators of microtubule-based vesicle transport. J Cell Biol 1991; 115: 1309–1318.

    Article  CAS  PubMed  Google Scholar 

  18. Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW . Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 1991; 115: 1639–1650.

    Article  CAS  PubMed  Google Scholar 

  19. Schroer TA . Dynactin. Annu Rev Cell Dev Biol 2004; 20: 759–779.

    Article  CAS  PubMed  Google Scholar 

  20. Quintyne NJ, Gill SR, Eckley DM, Crego CL, Compton DA, Schroer TA . Dynactin is required for microtubule anchoring at centrosomes. J Cell Biol 1999; 147: 321–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waterman-Storer CM, Karki S, Holzbaur EL . The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc Natl Acad Sci USA 1995; 92: 1634–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Strom AC, Weis K . Importin-beta-like nuclear transport receptors. Genome Biol 2001; 2: REVIEWS3008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, Nishii K et al. A giant nucleopore protein that binds Ran/TC4. Nature 1995; 376: 184–188.

    Article  CAS  PubMed  Google Scholar 

  24. Ben-Efraim I, Gerace L . Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import. J Cell Biol 2001; 152: 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F . The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 2002; 108: 109–120.

    Article  CAS  PubMed  Google Scholar 

  26. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995–1000.

    Article  PubMed  Google Scholar 

  27. Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL et al. EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine ‘fingers’ and contains a calmodulin-binding IQ motif. J Biol Chem 1995; 270: 13503–13511.

    Article  CAS  PubMed  Google Scholar 

  28. Dumas JJ, Merithew E, Sudharshan E, Rajamani D, Hayes S, Lawe D et al. Multivalent endosome targeting by homodimeric EEA1. Mol Cell 2001; 8: 947–958.

    Article  CAS  PubMed  Google Scholar 

  29. Skoufias DA, Wilson L . Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 1992; 31: 738–746.

    Article  CAS  PubMed  Google Scholar 

  30. Deacon SW, Serpinskaya AS, Vaughan PS, Lopez Fanarraga M, Vernos I, Vaughan KT et al. Dynactin is required for bidirectional organelle transport. J Cell Biol 2003; 160: 297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flores-Rodriguez N, Rogers SS, Kenwright DA, Waigh TA, Woodman PG, Allan VJ . Roles of dynein and dynactin in early endosome dynamics revealed using automated tracking and global analysis. PLoS ONE 2011; 6: e24479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeh TY, Quintyne NJ, Scipioni BR, Eckley DM, Schroer TA . Dynactin's pointed-end complex is a cargo-targeting module. Mol Biol Cell 2012; 23: 3827–3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shrum CK, DeFrancisco D, Meffert MK . Stimulated nuclear translocation of NF-κB and shuttling differentially depend on dynein and the dynactin complex. Proc Natl Acad Sci USA 2009; 106: 2647–2652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC . Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 2006; 98: 1570–1583.

    Article  CAS  PubMed  Google Scholar 

  35. Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol 2005; 25: 11005–11018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kazgan N, Williams T, Forsberg LJ, Brenman JE . Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol Biol Cell 2010; 21: 3433–3442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palmeri D, Malim MH . Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol Cell Biol. 1999; 19: 1218–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sciacca L, Mineo R, Pandini G, Murabito A, Vigneri R, Belfiore A . In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion and protection from apoptosis via the insulin receptor isoform A. Oncogene 2002; 21: 8240–8250.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson ES . Protein modification by SUMO. Annu Rev Biochem 2004; 73: 355–382.

    Article  CAS  PubMed  Google Scholar 

  40. Geiss-Friedlander R, Melchior F . Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007; 8: 947–956.

    Article  CAS  PubMed  Google Scholar 

  41. Hutten S, Flotho A, Melchior F, Kehlenbach RH . The Nup358-RanGAP complex is required for efficient importin alpha/beta-dependent nuclear import. Mol Biol Cell 2008; 19: 2300–2310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Walde S et al. Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. J Cell Biol 2011; 194: 597–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hilgarth RS, Sarge KD . Detection of sumoylated proteins. Methods Mol Biol. 2005; 301: 329–338.

    CAS  PubMed  Google Scholar 

  44. Roscioli E, Di Francesco L, Bolognesi A, Giubettini M, Orlando S, Harel A et al. Importin-beta negatively regulates multiple aspects of mitosis including RANGAP1 recruitment to kinetochores. J Cell Biol. 2012; 196: 435–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bodzin AS, Wei Z, Hurtt R, Gu T, Doria C . Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. J Cell Physiol 2012; 227: 2947–2952.

    Article  CAS  PubMed  Google Scholar 

  46. Prisco M, Santini F, Baffa R, Liu M, Drakas R, Wu A et al. Nuclear translocation of insulin receptor substrate-1 by the simian virus 40 T antigen and the activated type 1 insulin-like growth factor receptor. J Biol Chem 2002; 277: 32078–32085.

    Article  CAS  PubMed  Google Scholar 

  47. Miyauchi Y, Yogosawa S, Honda R, Nishida T, Yasuda H . Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J Biol Chem 2002; 277: 50131–50136.

    Article  CAS  PubMed  Google Scholar 

  48. Klenk C, Humrich J, Quitterer U, Lohse MJ . SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem 2006; 281: 8357–8364.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou YF, Liao SS, Luo YY, Tang JG, Wang JL, Lei LF et al. SUMO-1 modification on K166 of polyQ-expanded aTaxin-3 strengthens its stability and increases its cytotoxicity. PLoS One 2013; 8: e54214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ozaki Y, Matsui H, Nagamachi A, Asou H, Aki D, Inaba T . The dynactin complex maintains the integrity of metaphasic centrosomes to ensure transition to anaphase. J Biol Chem 2011; 286: 5589–5598.

    Article  CAS  PubMed  Google Scholar 

  51. Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M . The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr Biol 2004; 14: 611–617.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Cancer Foundation, the Swedish Research Council, the Cancer Society in Stockholm, the Swedish Children Cancer Society, the Stockholm County Council and the Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Packham.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packham, S., Warsito, D., Lin, Y. et al. Nuclear translocation of IGF-1R via p150Glued and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene 34, 2227–2238 (2015). https://doi.org/10.1038/onc.2014.165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.165

This article is cited by

Search

Quick links