Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Mammary glands exhibit molecular laterality and undergo left–right asymmetric ductal epithelial growth in MMTV-cNeu mice*

Abstract

Significant left–right (L–R) differences in tumor incidence and disease outcome occur for cancers of paired organs, including the breasts; however, the basis for this laterality is unknown. Here, we show that despite their morphologic symmetry, left versus right mammary glands in wild-type mice have baseline differences in gene expression that are L–R independently regulated during pubertal development, including genes that regulate luminal progenitor cell renewal, luminal cell differentiation, mammary tumorigenesis, tamoxifen sensitivity and chemotherapeutic resistance. In MMTV-cNeuTg/Tg mice, which model HER2/Neu-amplified breast cancer, baseline L–R differences in mammary gene expression are amplified, sustained or inverted in a gene-specific manner and the mammary ductal epithelium undergoes L–R asymmetric growth and patterning. Comparative genomic analysis of mouse L–R mammary gene expression profiles with gene expression profiles of human breast tumors revealed significant linkage between right-sided gene expression and decreased breast cancer patient survival. Collectively, these findings are the first to demonstrate that mammary glands are lateralized organs, and, moreover, that mammary glands have L–R differential susceptibility to HER2/Neu oncogene-mediated effects on ductal epithelial growth and differentiation. We propose that intrinsic molecular laterality may have a role in L–R asymmetric breast tumor incidence and, furthermore, that interplay between the L–R molecular landscape and oncogene activity may contribute to the differential disease progression and patient outcome that are associated with tumor situs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Delahunt B, Bethwaite P, Nacey JN . Renal cell carcinoma in New Zealand: a national survival study. Urology 1994; 43: 300–309.

    CAS  PubMed  Google Scholar 

  2. Roychoudhuri R, Putcha V, Møller H . Cancer and laterality: a study of the five major paired organs (UK). Cancer Causes Control 2006; 17: 655–662.

    PubMed  Google Scholar 

  3. Veltmaat JM, Ramsdell AF, Sterneck E . Positional variations in mammary gland development and cancer. J Mammary Gland Biol Neoplasia 2013; 18: 179–188.

    PubMed  PubMed Central  Google Scholar 

  4. Wilting J, Hagedorn M . Left-right asymmetry in embryonic development and breast cancer: common molecular determinants? Curr Med Chem 2011; 18: 5519–5527.

    CAS  PubMed  Google Scholar 

  5. Yoruk O, Karasen M, Timur H, Erdem T, Dane S, Tan U . Lateralizations of head-neck cancers are not associated with peripheral asymmetry of cell-mediated immunity. Int J Neurosci 2009; 119: 815–820.

    CAS  PubMed  Google Scholar 

  6. Fatima N, Zaman MU, Maqbool A, Khan SH, Riaz N . Lower incidence but more aggressive behavior of right sided breast cancer in Pakistani women: does right deserve more respect? Asian Pac J Cancer Prev 2013; 14: 43–45.

    PubMed  Google Scholar 

  7. Hartveit F, Tangen M, Hartveit E . Side and survival in breast cancer. Oncology 1984; 41: 149–154.

    CAS  PubMed  Google Scholar 

  8. Watson CJ, Khaled WT . Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 2008; 135: 995–1003.

    CAS  PubMed  Google Scholar 

  9. Biro FM, Deardorff J . Identifying opportunities for cancer prevention during preadolescence and adolescence: puberty as a window of susceptibility. J Adolesc Health 2013; 52 (Suppl) S15–S20.

    PubMed  PubMed Central  Google Scholar 

  10. Fenton SE . Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology 2006; 147: s18–s24.

    CAS  PubMed  Google Scholar 

  11. Fenton SE, Reed C, Newbold RR . Perinatal environmental exposures affect mammary development, function, and cancer risk in adulthood. Annu Rev Pharmacol Toxicol 2012; 52: 455–479.

    CAS  PubMed  Google Scholar 

  12. Fuseler JW, Robichaux JP, Atiyah HI, Ramsdell AF . Morphometric and fractal dimension analysis identifies early neoplastic changes in mammary epithelium of MMTV-cNeu mice. Anticancer Res 2014; 34: 1171–1177.

    PubMed  Google Scholar 

  13. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM . An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 2000; 5: 227–241.

    CAS  PubMed  Google Scholar 

  14. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9: 201–209.

    CAS  PubMed  Google Scholar 

  15. Carr JR, Kiefer MM, Park HJ, Li J, Wang Z, Fontanarosa J et al. FoxM1 regulates mammary luminal cell fate. Cell Rep 2012; 1: 715–729.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Teh MT . FOXM1 coming of age: time for translation into clinical benefits? Front Oncol 2012; 2: 146.

    PubMed  PubMed Central  Google Scholar 

  17. Chou J, Provot S, Werb Z . GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol 2010; 222: 42–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 2008; 3: 429–441.

    CAS  PubMed  Google Scholar 

  19. Farnie G, Clarke RB . Mammary stem cells and breast cancer—role of Notch signalling. Stem Cell Rev 2007; 3: 169–175.

    CAS  PubMed  Google Scholar 

  20. Visvader JE . Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23: 2563–2577.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mendes-Pereira AM, Sims D, Dexter T, Fenwick K, Assiotis I, Kozarewa I et al. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proc Natl Acad Sci USA 2012; 109: 2730–2735.

    CAS  PubMed  Google Scholar 

  22. Baquero MT, Hanna JA, Neumeister V, Cheng H, Molinaro AM, Harris LN et al. Stathmin expression and its relationship to microtubule-associated protein tau and outcome in breast cancer. Cancer 2012; 118: 4660–4669.

    CAS  PubMed  Google Scholar 

  23. Han ZX, Wang HM, Jiang G, Du XP, Gao XY, Pei DS . Overcoming Paclitaxel resistance in lung cancer cells via dual inhibition of stathmin and Bcl-2. Cancer Biother Radiopharm 2013; 28: 398–405.

    CAS  PubMed  Google Scholar 

  24. Meng XL, Su D, Wang L, Gao Y, Hu YJ, Yang HJ et al. Low expression of stathmin in tumor predicts high response to neoadjuvant chemotherapy with docetaxel-containing regimens in locally advanced breast cancer. Genet Test Mol Biomarkers 2012; 16: 689–694.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Miceli C, Tejada A, Castaneda A, Mistry SJ . Cell cycle inhibition therapy that targets stathmin in in vitro and in vivo models of breast cancer. Cancer Gene Ther 2013; 20: 298–307.

    CAS  PubMed  Google Scholar 

  26. Su D, Smith SM, Preti M, Schwartz P, Rutherford TJ, Menato G et al. Stathmin and tubulin expression and survival of ovarian cancer patients receiving platinum treatment with and without paclitaxel. Cancer 2009; 115: 2453–2463.

    CAS  PubMed  Google Scholar 

  27. Hutchinson JN, Muller WJ . Transgenic mouse models of human breast cancer. Oncogene 2000; 19: 6130–6137.

    CAS  PubMed  Google Scholar 

  28. Lindsay J, Jiao X, Sakamaki T, Casimiro MC, Shirley LA, Tran TH et al. ErbB2 induces Notch1 activity and function in breast cancer cells. Clin Transl Sci 2008; 1: 107–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta 2010; 1806: 258–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carr JR, Park HJ, Wang Z, Kiefer MM, Raychaudhuri P . FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res 2010; 70: 5054–5063.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwok JM, Peck B, Monteiro LJ, Schwenen HD, Millour J, Coombes RC et al. FOXM1 confers acquired cisplatin resistance in breast cancer cells. Mol Cancer Res 2010; 8: 24–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Millour J, Constantinidou D, Stavropoulou AV, Wilson MS, Myatt SS, Kwok JM et al. FOXM1 is a transcriptional target of ERalpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 2010; 29: 2983–2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brill B, Boecher N, Groner B, Shemanko CS . A sparing procedure to clear the mouse mammary fat pad of epithelial components for transplantation analysis. Lab Anim 2008; 42: 104–110.

    CAS  PubMed  Google Scholar 

  34. Cardiff RD, Wellings SR . The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 1999; 4: 105–122.

    CAS  PubMed  Google Scholar 

  35. Mukherjee S, Louie SG, Campbell M, Esserman L, Shyamala G . Ductal growth is impeded in mammary glands of C-neu transgenic mice. Oncogene 2000; 19: 5982–5987.

    CAS  PubMed  Google Scholar 

  36. Sotiriou C, Pusztai L . Gene-expression signatures in breast cancer. N Engl J Med 2009; 360: 790–800.

    CAS  PubMed  Google Scholar 

  37. Golding JP, Partridge TA, Beauchamp JR, King T, Brown NA, Gassmann M et al. Mouse myotomes pairs exhibit left-right asymmetric expression of MLC3F and alpha-skeletal actin. Dev Dyn 2004; 231: 795–800.

    CAS  PubMed  Google Scholar 

  38. Golding JP, Tsoni S, Dixon M, Yee KT, Partridge TA, Beauchamp JR et al. Heparin-binding EGF-like growth factor shows transient left-right asymmetrical expression in mouse myotome pairs. Gene Expr Patterns 2004; 5: 3–9.

    CAS  PubMed  Google Scholar 

  39. Chintapalli VR, Terhzaz S, Wang J, Al Bratty M, Watson DG, Herzyk P et al. Functional correlates of positional and gender-specific renal asymmetry in Drosophila. PLoS ONE 2012; 7: e32577.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Eccles SA . The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol 2011; 55: 685–696.

    PubMed  Google Scholar 

  41. Veltmaat JM, Relaix F, Le LT, Kratochwil K, Sala FG, van Veelen W et al. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 2006; 133: 2325–2335.

    CAS  PubMed  Google Scholar 

  42. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    PubMed  Google Scholar 

  43. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009; 37: D674–D679.

    CAS  PubMed  Google Scholar 

  44. Zhao S, Fernald RD . Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 2005; 12: 1047–1064.

    CAS  PubMed  Google Scholar 

  45. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365: 671–679.

    Article  CAS  PubMed  Google Scholar 

  46. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007; 13: 3207–3214.

    CAS  PubMed  Google Scholar 

  47. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 2006; 66: 10292–10301.

    CAS  PubMed  Google Scholar 

  48. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305: 1873–1881.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 2005; 102: 13550–13555.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hallett RM, Dvorkin-Gheva A, Bane A, Hassell JA . A gene signature for predicting outcome in patients with basal-like breast cancer. Scientific Rep 2012; 2: 227.

    Google Scholar 

  51. Hallett RM, Pond G, Hassell JA . A target based approach identifies genomic predictors of breast cancer patient response to chemotherapy. BMC Med Genom 2012; 5: 16.

    CAS  Google Scholar 

  52. Mohanan S, Cherrington BD, Horibata S, McElwee JL, Thompson PR, Coonrod SA . Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochem Res Int 2012; 2012: 895343.

    PubMed  PubMed Central  Google Scholar 

  53. El Hajj P, Journe F, Wiedig M, Laios I, Sales F, Galibert MD et al. Tyrosinase-related protein 1 mRNA expression in lymph node metastases predicts overall survival in high-risk melanoma patients. Br J Cancer 2013; 108: 1641–1647.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Falkenius J, Lundeberg J, Johansson H, Tuominen R, Frostvik-Stolt M, Hansson J et al. High expression of glycolytic and pigment proteins is associated with worse clinical outcome in stage III melanoma. Melanoma Res 2013; 23: 452–460.

    CAS  PubMed  Google Scholar 

  55. Journe F, Id Boufker H, Van Kempen L, Galibert MD, Wiedig M, Sales F et al. TYRP1 mRNA expression in melanoma metastases correlates with clinical outcome. Br J Cancer 2011; 105: 1726–1732.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mobasheri A, Barrett-Jolley R . Aquaporin water channels in the mammary gland: from physiology to pathophysiology and neoplasia. J Mammary Gland Biol Neoplasia. 2013; 19: 91–102.

    PubMed  PubMed Central  Google Scholar 

  57. Cao XC, Zhang WR, Cao WF, Liu BW, Zhang F, Zhao HM et al. Aquaporin3 is required for FGF-2-induced migration of human breast cancers. PLoS ONE 2013; 8: e56735.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li A, Lu D, Zhang Y, Li J, Fang Y, Li F et al. Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance. Oncol Rep 2013; 29: 535–540.

    PubMed  Google Scholar 

  59. Liu W, Wang K, Gong K, Li X, Luo K . Epidermal growth factor enhances MPC-83 pancreatic cancer cell migration through the upregulation of aquaporin 3. Mol Med Rep 2012; 6: 607–610.

    CAS  PubMed  Google Scholar 

  60. Colas E, Perez C, Cabrera S, Pedrola N, Monge M, Castellvi J et al. Molecular markers of endometrial carcinoma detected in uterine aspirates. Int J Cancer 2011; 129: 2435–2444.

    CAS  PubMed  Google Scholar 

  61. de Wit M, Kant H, Piersma SR, Pham TV, Mongera S, van Berkel MP et al. Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling. J Proteom 2014; 99C: 26–39.

    Google Scholar 

  62. Hsu I, Chuang KL, Slavin S, Da J, Lim WX, Pang ST et al. Suppression of ERbeta signaling via ERbeta knockout or antagonist protects against bladder cancer development. Carcinogenesis 2013; 35: 651–661.

    PubMed  Google Scholar 

  63. Gakiopoulou H, Korkolopoulou P, Levidou G, Thymara I, Saetta A, Piperi C et al. Minichromosome maintenance proteins 2 and 5 in non-benign epithelial ovarian tumours: relationship with cell cycle regulators and prognostic implications. Br J Cancer 2007; 97: 1124–1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dalgin GS, Drever M, Williams T, King T, DeLisi C, Liou LS . Identification of novel epigenetic markers for clear cell renal cell carcinoma. J Urol 2008; 180: 1126–1130.

    CAS  PubMed  Google Scholar 

  65. Li WJ, Zhong SL, Wu YJ, Xu WD, Xu JJ, Tang JH et al. Systematic expression analysis of genes related to multidrug-resistance in isogenic docetaxel- and adriamycin-resistant breast cancer cell lines. Mol Biol Rep 2013; 40: 6143–6150.

    CAS  PubMed  Google Scholar 

  66. Hwang JE, Hong JY, Kim K, Kim SH, Choi WY, Kim MJ et al. Class III beta-tubulin is a predictive marker for taxane-based chemotherapy in recurrent and metastatic gastric cancer. BMC Cancer 2013; 13: 431.

    PubMed  PubMed Central  Google Scholar 

  67. Pasini A, Paganelli G, Tesei A, Zoli W, Giordano E, Calistri D . Specific biomarkers are associated with docetaxeland gemcitabine-resistant NSCLC cell lines. Transl Oncol 2012; 5: 461–468.

    PubMed  PubMed Central  Google Scholar 

  68. Maynadier M, Chambon M, Basile I, Gleizes M, Nirde P, Gary-Bobo M et al. Estrogens promote cell-cell adhesion of normal and malignant mammary cells through increased desmosome formation. Mol Cell Endocrinol 2012; 364: 126–133.

    CAS  PubMed  Google Scholar 

  69. Valladares-Ayerbes M, Diaz-Prado S, Reboredo M, Medina V, Lorenzo-Patino MJ, Iglesias-Diaz P et al. Evaluation of plakophilin-3 mRNA as a biomarker for detection of circulating tumor cells in gastrointestinal cancer patients. Cancer Epidemiol Biomarkers Prev 2010; 19: 1432–1440.

    CAS  PubMed  Google Scholar 

  70. Hu K, Law JH, Fotovati A, Dunn SE . Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res 2012; 14: R22.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wierer M, Verde G, Pisano P, Molina H, Font-Mateu J, Di Croce L et al. PLK1 signaling in breast cancer cells cooperates with estrogen receptor-dependent gene transcription. Cell Rep 2013; 3: 2021–2032.

    CAS  PubMed  Google Scholar 

  72. Maire V, Nemati F, Richardson M, Vincent-Salomon A, Tesson B, Rigaill G et al. Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer Res 2013; 73: 813–823.

    CAS  PubMed  Google Scholar 

  73. King SI, Purdie CA, Bray SE, Quinlan PR, Jordan LB, Thompson AM et al. Immunohistochemical detection of Polo-like kinase-1 (PLK1) in primary breast cancer is associated with TP53 mutation and poor clinical outcom. Breast Cancer Res 2012; 14: R40.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zou J, Rezvani K, Wang H, Lee KS, Zhang D . BRCA1 downregulates the kinase activity of Polo-like kinase 1 in response to replication stress. Cell Cycle 2013; 12: 14.

    Google Scholar 

  75. Kaneko N, Yamanaka K, Kita A, Tabata K, Akabane T, Mori M . Synergistic antitumor activities of sepantronium bromide (YM155), a survivin suppressant, in combination with microtubule-targeting agents in triple-negative breast cancer cells. Biol Pharm Bull 2013; 36: 1921–1927.

    CAS  PubMed  Google Scholar 

  76. Cheng Y, Holloway MP, Nguyen K, McCauley D, Landesman Y, Kauffman MG et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple negative breast cancer. Molecular cancer therapeutics 2014; 13: 675–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao YC, Wang Y, Ni XJ, Li Y, Wang XM, Zhu YY et al. Clinical significance of Smac and survivin expression in breast cancer patients treated with anthracyclinebased neoadjuvant chemotherapy. Mol Med Rep 2014; 9: 614–620.

    CAS  PubMed  Google Scholar 

  78. Petrarca CR, Brunetto AT, Duval V, Brondani A, Carvalho GP, Garicochea B . Survivin as a predictive biomarker of complete pathologic response to neoadjuvant chemotherapy in patients with stage II and stage III breast cancer. Clin Breast Cancer 2011; 11: 129–134.

    CAS  PubMed  Google Scholar 

  79. Zhang M, Zhang X, Zhao S, Wang Y, Di W, Zhao G et al. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients. Target Oncol (e-pub ahead of print 15 November 2013).

    Google Scholar 

  80. Wang QP, Wang Y, Wang XD, Mo XM, Gu J, Lu ZY et al. Survivin up-regulates the expression of breast cancer resistance protein (BCRP) through attenuating the suppression of p53 on NF-kappaB expression in MCF-7/5-FU cells. Int J Biochem Cell Biol 2013; 45: 2036–2044.

    CAS  PubMed  Google Scholar 

  81. Flanagan JM, Wilhelm-Benartzi CS, Metcalf M, Kaye SB, Brown R . Association of somatic DNA methylation variability with progression-free survival and toxicity in ovarian cancer patients. Ann Oncol 2013; 24: 2813–2818.

    CAS  PubMed  Google Scholar 

  82. Boudreau A, Tanner K, Wang D, Geyer FC, Reis-Filho JS, Bissell MJ . 14-3-3Sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proc Natl Acad Sci USA 2013; 110: E3937–E3944.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang EY, Cristofanilli M, Robertson F, Reuben JM, Mu Z, Beavis RC et al. Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer. J Proteome Res 2013; 12: 2805–2817.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gheibi A, Kazemi M, Baradaran A, Akbari M, Salehi M . Study of promoter methylation pattern of 14-3-3 sigma gene in normal and cancerous tissue of breast: a potential biomarker for detection of breast cancer in patients. Adv Biomed Res 2012; 1: 80.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zurita M, Lara PC, del Moral R, Torres B, Linares-Fernandez JL, Arrabal SR et al. Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer 2010; 10: 217.

    PubMed  PubMed Central  Google Scholar 

  86. Gasnereau I, Boissan M, Margall-Ducos G, Couchy G, Wendum D, Bourgain-Guglielmetti F et al. KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and hepatocarcinogenesis. Am J Pathol 2012; 180: 131–140.

    CAS  PubMed  Google Scholar 

  87. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K et al. Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer 2011; 104: 300–307.

    CAS  PubMed  Google Scholar 

  88. Yamashita J, Fukushima S, Jinnin M, Honda N, Makino K, Sakai K et al. Kinesin family member 20A is a novel melanoma-associated antigen. Acta Dermatol Venereol 2012; 92: 593–597.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Scott Argraves, Dr Jeremey Barth and Mr Victor Fresco of the MUSC Proteogenomics Facility for performing the DNA microarray and Dr Caroline Alexander and Dr Elizabeth Yeh for helpful discussion. This work was supported by National Institutes of Health K02HL086737 (AFR), R21HD068993 (AFR) and conducted in facilities supported, in part, by Cancer Center Support Grant P30CA138313 to the Hollings Cancer Center, MUSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A F Ramsdell.

Ethics declarations

Competing interests

The authors declare no conflict interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robichaux, J., Hallett, R., Fuseler, J. et al. Mammary glands exhibit molecular laterality and undergo left–right asymmetric ductal epithelial growth in MMTV-cNeu mice*. Oncogene 34, 2003–2010 (2015). https://doi.org/10.1038/onc.2014.149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.149

This article is cited by

Search

Quick links