Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeted resequencing of the microRNAome and 3′UTRome reveals functional germline DNA variants with altered prevalence in epithelial ovarian cancer

Abstract

Ovarian cancer is a major cause of cancer deaths, yet there have been few known genetic risk factors identified, the best known of which are disruptions in protein coding sequences (BRCA1 and 2). Recent findings indicate that there are powerful genetic markers of cancer risk outside of these regions, in the noncoding mRNA control regions. To identify additional cancer-associated, functional non-protein-coding sequence germline variants associated with ovarian cancer risk, we captured DNA regions corresponding to all validated human microRNAs and the 3′ untranslated regions (UTRs) of ~6000 cancer-associated genes from 31 ovarian cancer patients. Multiple single-nucleotide polymorphisms in the 3′UTR of the vascular endothelial growth factor receptor/FLT1, E2F2 and PCM1 oncogenes were highly enriched in ovarian cancer patients compared with the 1000 Genome Project. Sequenom validation in a case–control study (267 cases and 89 controls) confirmed a novel variant in the PCM1 3’UTR is significantly associated with ovarian cancer (P=0.0086). This work identifies a potential new ovarian cancer locus and further confirms that cancer resequencing efforts should not ignore the study of noncoding regions of cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Agarwal R, Kaye SB . Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 2003; 3: 502–516.

    Article  CAS  Google Scholar 

  2. Despierre E, Lambrechts D, Neven P, Amant F, Lambrechts S, Vergote I . The molecular genetic basis of ovarian cancer and its roadmap towards a better treatment. Gynecol Oncol 2010; 117: 358–365.

    Article  CAS  Google Scholar 

  3. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747–753.

    Article  CAS  Google Scholar 

  4. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362–9367.

    Article  CAS  Google Scholar 

  5. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. New Engl J Med 2009; 361: 1058–1066.

    Article  CAS  Google Scholar 

  6. Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 2009; 324: 217.

    Article  CAS  Google Scholar 

  7. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. IDH1 and IDH2 mutations in gliomas. New Engl J Med 2009; 360: 765–773.

    Article  CAS  Google Scholar 

  8. Collins FS, Barker AD . Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci Am 2007; 296: 50–57.

    Article  CAS  Google Scholar 

  9. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67: 8699–8707.

    Article  CAS  Google Scholar 

  10. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  11. Saunders MA, Liang H, Wen-Hsiung L . Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA 2007; 104: 3300–3305.

    Article  CAS  Google Scholar 

  12. Blitzblau RC, Weidhaas JB . MicroRNA binding-site polymorphisms as potential biomarkers of cancer risk. Mol Diagn Ther 2010; 14: 335–342.

    Article  CAS  Google Scholar 

  13. Ryan BM, Robles AI, Harris CC . Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 2010; 10: 389–402.

    Article  CAS  Google Scholar 

  14. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New Engl J Med 2005; 353: 1793–1801.

    Article  CAS  Google Scholar 

  15. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I et al. A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res 2008; 68: 8535–8540.

    Article  CAS  Google Scholar 

  16. Shen J, DiCioccio R, Odunsi K, Lele SB, Zhao H . Novel genetic variants in miR-191 gene and familial ovarian cancer. BMC Cancer 2010; 10: 47.

    Article  Google Scholar 

  17. Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H . A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 2008; 29: 1963–1966.

    Article  CAS  Google Scholar 

  18. Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, Slack F et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res 2009; 69: 5970–5977.

    Article  CAS  Google Scholar 

  19. Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A et al. A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncol 2011; 12: 377–386.

    Article  CAS  Google Scholar 

  20. Ratner E, Lu L, Boeke M, Barnett R, Nallur S, Chin LJ et al. A KRAS-variant in ovarian cancer acts as a genetic marker of cancer risk. Cancer Res 2010; 70: 6509–6515.

    Article  CAS  Google Scholar 

  21. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet 2007; 39: 1522–1527.

    Article  CAS  Google Scholar 

  22. Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME . Microarray-based genomic selection for high-throughput resequencing. Nat Methods 2007; 4: 907–909.

    Article  CAS  Google Scholar 

  23. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods 2007; 4: 903–905.

    Article  CAS  Google Scholar 

  24. Kato M, de Lencastre A, Pincus Z, Slack FJ . Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 2009; 10: R54.

    Article  Google Scholar 

  25. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  Google Scholar 

  26. Li H, Ruan J, Durbin R . Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008; 18: 1851–1858.

    Article  CAS  Google Scholar 

  27. Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y et al. Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res 2010; 70: 9765–9776.

    Article  CAS  Google Scholar 

  28. Li Y, Liang J, Kang S, Dong Z, Wang N, Xing H et al. E-cadherin gene polymorphisms and haplotype associated with the occurrence of epithelial ovarian cancer in Chinese. Gynecol Oncol 2008; 108: 409–414.

    Article  CAS  Google Scholar 

  29. Pongsavee M, Yamkamon V, Dakeng S, Oc P, Smith DR, Saunders GF et al. The BRCA1 3'-UTR: 5711+421T/T_5711+1286T/T genotype is a possible breast and ovarian cancer risk factor. Genet Test Mol Biomarkers 2009; 13: 307–317.

    Article  CAS  Google Scholar 

  30. Terry KL, Vitonis AF, Hernandez D, Lurie G, Song H, Ramus SJ et al. A polymorphism in the GALNT2 gene and ovarian cancer risk in four population based case-control studies. Int J Mol Epidemiol Genet 2010; 1: 272–277.

    CAS  Google Scholar 

  31. Doherty JA, Rossing MA, Cushing-Haugen KL, Chen C, Van Den Berg DJ, Wu AH et al. ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium study. Cancer Epidemiol Biomarkers Prev 2010; 19: 245–250.

    Article  CAS  Google Scholar 

  32. Pastrello C, Polesel J, Della Puppa L, Viel A, Maestro R . Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis 2010; 31: 2124–2126.

    Article  CAS  Google Scholar 

  33. Wynendaele J, Bohnke A, Leucci E, Nielsen SJ, Lambertz I, Hammer S et al. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res 2010; 70: 9641–9649.

    Article  CAS  Google Scholar 

  34. Pearce CL, Doherty JA, Van Den Berg DJ, Moysich K, Hsu C, Cushing-Haugen KL et al. Genetic variation in insulin-like growth factor 2 may play a role in ovarian cancer risk. Hum Mol Genet 2011; 20: 2263–2272.

    Article  CAS  Google Scholar 

  35. Batra J, Nagle CM, O'Mara T, Higgins M, Dong Y, Tan OL et al. A Kallikrein 15 (KLK15) single nucleotide polymorphism located close to a novel exon shows evidence of association with poor ovarian cancer survival. BMC Cancer 2011; 11: 119.

    Article  CAS  Google Scholar 

  36. Permuth-Wey J, Kim D, Tsai YY, Lin HY, Chen YA, Barnholtz-Sloan J et al. LIN28B polymorphisms influence susceptibility to epithelial ovarian cancer. Cancer Res 2011; 71: 3896–3903.

    Article  CAS  Google Scholar 

  37. Lurie G, Wilkens LR, Thompson PJ, Shvetsov YB, Matsuno RK, Carney ME et al. Estrogen receptor beta rs1271572 polymorphism and invasive ovarian carcinoma risk: pooled analysis within the Ovarian Cancer Association Consortium. PLoS ONE 2011; 6: e20703.

    Article  CAS  Google Scholar 

  38. Peethambaram P, Fridley BL, Vierkant RA, Larson MC, Kalli KR, Elliott EA et al. Polymorphisms in ABCB1 and ERCC2 associated with ovarian cancer outcome. Int J Mol Epidemiol Genet 2011; 2: 185–195.

    CAS  Google Scholar 

  39. Kontorovich T, Levy A, Korostishevsky M, Nir U, Friedman E . Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer 2010; 127: 589–597.

    Article  CAS  Google Scholar 

  40. Smigielski EM, Sirotkin K, Ward M, Sherry ST . dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 2000; 28: 352–355.

    Article  CAS  Google Scholar 

  41. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  CAS  Google Scholar 

  42. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009; 106: 19096–19101.

    Article  CAS  Google Scholar 

  43. Masciullo V, Baldassarre G, Pentimalli F, Berlingieri MT, Boccia A, Chiappetta G et al. HMGA1 protein over-expression is a frequent feature of epithelial ovarian carcinomas. Carcinogenesis 2003; 24: 1191–1198.

    Article  CAS  Google Scholar 

  44. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 2004; 91: 355–358.

    Article  CAS  Google Scholar 

  45. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

    Article  CAS  Google Scholar 

  46. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . Human MicroRNA targets. PLoS Biol 2004; 2: e363.

    Article  Google Scholar 

  47. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  Google Scholar 

  48. Ramakrishna M, Williams LH, Boyle SE, Bearfoot JL, Sridhar A, Speed TP et al. Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis. PLoS ONE 2010; 5: e9983.

    Article  Google Scholar 

  49. Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB et al. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics 2009; 2: 71.

    Article  Google Scholar 

  50. Chien J, Fan JB, Bell DA, April C, Klotzle B, Ota T et al. Analysis of gene expression in stage I serous tumors identifies critical pathways altered in ovarian cancer. Gynecol Oncol 2009; 114: 3–11.

    Article  CAS  Google Scholar 

  51. Corvi R, Berger N, Balczon R, Romeo G RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene 2000; 19: 4236–4242.

    Article  CAS  Google Scholar 

  52. Balczon R, Bao L . PCM-1 Zimmer WE. A 228-kD centrosome autoantigen with a distinct cell cycle distribution. J Cell Biol 1994; 124: 783–793.

    Article  CAS  Google Scholar 

  53. Adelaide J, Perot C, Gelsi-Boyer V, Pautas C, Murati A, Copie-Bergman C et al. A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. Leukemia 2006; 20: 536–537.

    Article  CAS  Google Scholar 

  54. Bousquet M, Quelen C, De Mas V, Duchayne E, Roquefeuil B, Delsol G et al. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005; 24: 7248–7252.

    Article  CAS  Google Scholar 

  55. Armes JE, Hammet F, de Silva M, Ciciulla J, Ramus SJ, Soo WK et al. Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogene 2004; 23: 5697–5702.

    Article  CAS  Google Scholar 

  56. Pils D, Horak P, Gleiss A, Sax C, Fabjani G, Moebus VJ et al. Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer 2005; 104: 2417–2429.

    Article  CAS  Google Scholar 

  57. Ramsingh G, Koboldt DC, Trissal M, Chiappinelli KB, Wylie T, Koul S et al. Complete characterization of the microRNAome in a patient with acute myeloid leukemia. Blood 2010; 116: 5316–5326.

    Article  CAS  Google Scholar 

  58. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC et al. The genetic landscape of the childhood cancer medulloblastoma. Science 2011; 331: 435–439.

    Article  CAS  Google Scholar 

  59. Markman M . Antiangiogenic drugs in ovarian cancer. Expert Opin Pharmacother 2009; 10: 2269–2277.

    Article  CAS  Google Scholar 

  60. Kumaran GC, Jayson GC, Clamp AR . Antiangiogenic drugs in ovarian cancer. Br J Cancer 2009; 100: 1–7.

    Article  CAS  Google Scholar 

  61. Wang L, Tsutsumi S, Kawaguchi T, Nagasaki K, Tatsuno K, Yamamoto S et al. Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res 2012; 22: 208–219.

    Article  CAS  Google Scholar 

  62. Cromer MK, Starker LF, Choi M, Udelsman R, Nelson-Williams C, Lifton RP et al. Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. J Clin Endocrinol Metab 2012; 97: E1774–E1781.

    Article  CAS  Google Scholar 

  63. Liu P, Morrison C, Wang L, Xiong D, Vedell P, Cui P et al. Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis 2012; 33: 1270–1276.

    Article  Google Scholar 

  64. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34 (Database issue): D140–D144.

    Article  CAS  Google Scholar 

  65. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  Google Scholar 

  66. Huang da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  Google Scholar 

  67. Ratner ES, Keane FK, Lindner R, Tassi RA, Paranjape T, Glasgow M et al. A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene 2012; 31: 4559–4566.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

XC was supported by Lo Graduate Fellowship for Excellence in Stem Cell Research and a fellowship from the China Scholars Council. TP was supported by a donation from William Hyman, Yale College Class of 1980, in memory of Barbara Skydel. We thank I Tikhonova, M Mahajan and S Mane at the YCGA for performing the Nimblegen enrichment and Sequenom arrays. We thank M State for critical reading of this manuscript. This work was supported by a grant from an anonymous foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J B Weidhaas or F J Slack.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Paranjape, T., Stahlhut, C. et al. Targeted resequencing of the microRNAome and 3′UTRome reveals functional germline DNA variants with altered prevalence in epithelial ovarian cancer. Oncogene 34, 2125–2137 (2015). https://doi.org/10.1038/onc.2014.117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.117

This article is cited by

Search

Quick links