Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MUC4 regulates cellular senescence in head and neck squamous cell carcinoma through p16/Rb pathway

A Corrigendum to this article was published on 21 May 2015

Abstract

The limited effectiveness of therapy for patients with advanced stage head and neck squamous cell carcinoma (HNSCC) or recurrent disease is a reflection of an incomplete understanding of the molecular basis of HNSCC pathogenesis. MUC4, a high molecular weight glycoprotein, is differentially overexpressed in many human cancers and implicated in cancer progression and resistance to several chemotherapies. However, its clinical relevance and the molecular mechanisms through which it mediates HNSCC progression are not well understood. This study revealed a significant upregulation of MUC4 in 78% (68/87) of HNSCC tissues compared with 10% positivity (1/10) in benign samples (P=0.006, odds ratio (95% confidence interval)=10.74 (2.0–57.56). MUC4 knockdown (KD) in SCC1 and SCC10B HNSCC cell lines resulted in significant inhibition of growth in vitro and in vivo, increased senescence as indicated by an increase in the number of flat, enlarged and senescence-associated β-galactosidase (SA-β-Gal)-positive cells. Decreased cellular proliferation was associated with G0/G1 cell cycle arrest and decrease expression of cell cycle regulatory proteins like cyclin E, cyclin D1 and decrease in BrdU incorporation. Mechanistic studies revealed upregulation of p16, pRb dephosphorylation and its interaction with histone deacetylase 1/2. This resulted in decreased histone acetylation (H3K9) at c yclin E promoter leading to its downregulation. Orthotopic implantation of MUC4 KD SCC1 cells into the floor of the mouth in nude mice resulted in the formation of significantly smaller tumors (170±18.30 mg) compared to those (375±17.29 mg) formed by control cells (P=0.00007). In conclusion, our findings showed that MUC4 overexpression has a critical role by regulating proliferation and cellular senescence of HNSCC cells. Downregulation of MUC4 may be a promising therapeutic approach for treating HNSCC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Argiris A, Karamouzis MV, Raben D, Ferris RL . Head and neck cancer. Lancet 2008; 371: 1695–1709.

    Article  CAS  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  Google Scholar 

  3. Gil Z, Fliss DM . Contemporary management of head and neck cancers. Isr Med Assoc J 2009; 11: 296–300.

    PubMed  Google Scholar 

  4. Kaur S, Kumar S, Momi N, Sasson AR, Batra SK . Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 2013; 10: 607–620.

    Article  CAS  Google Scholar 

  5. Kufe DW . Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 2009; 9: 874–885.

    Article  CAS  Google Scholar 

  6. Chakraborty S, Jain M, Sasson AR, Batra SK . MUC4 as a diagnostic marker in cancer. Expert Opin Med Diagn 2008; 2: 891–910.

    Article  CAS  Google Scholar 

  7. Bafna S, Singh AP, Moniaux N, Eudy JD, Meza JL, Batra SK . MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. Cancer Res 2008; 68: 9231–9238.

    Article  CAS  Google Scholar 

  8. Chaturvedi P, Singh AP, Moniaux N, Senapati S, Chakraborty S, Meza JL et al. MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol Cancer Res 2007; 5: 309–320.

    Article  CAS  Google Scholar 

  9. Ponnusamy MP, Batra SK . Ovarian cancer: emerging concept on cancer stem cells. J Ovarian Res 2008; 1: 4–1.

    Article  Google Scholar 

  10. Rachagani S, Macha MA, Ponnusamy MP, Haridas D, Kaur S, Jain M et al. MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis 2012; 33: 1953–1964.

    Article  CAS  Google Scholar 

  11. Sano D, Xie TX, Ow TJ, Zhao M, Pickering CR, Zhou G et al. Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. Clin Cancer Res 2011; 17: 6658–6670.

    Article  CAS  Google Scholar 

  12. Tang AL, Hauff SJ, Owen JH, Graham MP, Czerwinski MJ, Park JJ et al. UM-SCC-104: a new human papillomavirus-16-positive cancer stem cell-containing head and neck squamous cell carcinoma cell line. Head Neck 2012; 34: 1480–1491.

    Article  Google Scholar 

  13. Campisi J, d'Adda di FF . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  Google Scholar 

  14. Mukhopadhyay P, Lakshmanan I, Ponnusamy MP, Chakraborty S, Jain M, Pai P et al. MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS ONE 2013; 8: e54455.

    Article  CAS  Google Scholar 

  15. Cammarano MS, Nekrasova T, Noel B, Minden A . Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol Cell Biol 2005; 25: 9532–9542.

    Article  CAS  Google Scholar 

  16. Zhang X, Kim J, Ruthazer R, McDevitt MA, Wazer DE, Paulson KE et al. The HBP1 transcriptional repressor participates in RAS-induced premature senescence. Mol Cell Biol 2006; 26: 8252–8266.

    Article  CAS  Google Scholar 

  17. Campisi J . Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005; 120: 513–522.

    Article  CAS  Google Scholar 

  18. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113: 703–716.

    Article  CAS  Google Scholar 

  19. Bandyopadhyay D, Okan NA, Bales E, Nascimento L, Cole PA, Medrano EE . Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res 2002; 62: 6231–6239.

    CAS  PubMed  Google Scholar 

  20. Harbour JW, Dean DC . Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2000; 2: E65–E67.

    Article  CAS  Google Scholar 

  21. Ohtani K, DeGregori J, Nevins JR . Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 1995; 19: 12146–12150.

    Article  Google Scholar 

  22. Chaturvedi P, Singh AP, Batra SK . Structure, evolution, and biology of the MUC4 mucin. FASEB J 2008; 22: 966–981.

    Article  CAS  Google Scholar 

  23. Dey P, Rachagani S, Chakraborty S, Singh PK, Zhao X, Gurumurthy CB et al. Overexpression of ecdysoneless in pancreatic cancer and its role in oncogenesis by regulating glycolysis. Clin Cancer Res 2012; 18: 6188–6198.

    Article  CAS  Google Scholar 

  24. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol 2005; 18: 1295–1304.

    Article  CAS  Google Scholar 

  25. Alos L, Lujan B, Castillo M, Nadal A, Carreras M, Caballero M et al. Expression of membrane-bound mucins (MUC1 and MUC4) and secreted mucins (MUC2, MUC5AC, MUC5B, MUC6 and MUC7) in mucoepidermoid carcinomas of salivary glands. Am J Surg Pathol 2005; 29: 806–813.

    Article  Google Scholar 

  26. Rabassa ME, Croce MV, Pereyra A, Segal-Eiras A . MUC1 expression and anti-MUC1 serum immune response in head and neck squamous cell carcinoma (HNSCC): a multivariate analysis. BMC Cancer 2006; 6: 253.

    Article  Google Scholar 

  27. Weed DT, Gomez-Fernandez C, Bonfante E, Lee TD, Pacheco J, Carvajal ME et al. MUC4 (sialomucin complex) expression in salivary gland tumors and squamous cell carcinoma of the upper aerodigestive tract. Otolaryngol Head Neck Surg 2001; 124: 127–141.

    Article  CAS  Google Scholar 

  28. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.

    Article  CAS  Google Scholar 

  29. Hamada T, Wakamatsu T, Miyahara M, Nagata S, Nomura M, Kamikawa Y et al. MUC4: a novel prognostic factor of oral squamous cell carcinoma. Int J Cancer 2012; 130: 1768–1776.

    Article  CAS  Google Scholar 

  30. Kitazono I, Higashi M, Kitamoto S, Yokoyama S, Horinouchi M, Osako M et al. Expression of MUC4 mucin is observed mainly in the intestinal type of intraductal papillary mucinous neoplasm of the pancreas. Pancreas 2013; 42: 1120–1128.

    Article  CAS  Google Scholar 

  31. Tamura Y, Higashi M, Kitamoto S, Yokoyama S, Osako M, Horinouchi M et al. MUC4 and MUC1 expression in adenocarcinoma of the stomach correlates with vessel invasion and lymph node metastasis: an immunohistochemical study of early gastric cancer. PLoS ONE 2012; 7: e49251.

    Article  CAS  Google Scholar 

  32. Evan GI, Vousden KH . Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348.

    Article  CAS  Google Scholar 

  33. Ponnusamy MP, Lakshmanan I, Jain M, Das S, Chakraborty S, Dey P et al. MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 2010; 29: 5741–5754.

    Article  CAS  Google Scholar 

  34. Dimri GP, Campisi J . Molecular and cell biology of replicative senescence. Cold Spring Harb Symp Quant Biol 1994; 59: 67–73.

    Article  CAS  Google Scholar 

  35. Lowe SW, Cepero E, Evan G . Intrinsic tumour suppression. Nature 2004; 432: 307–315.

    Article  CAS  Google Scholar 

  36. Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 1996; 56: 2488–2492.

    CAS  PubMed  Google Scholar 

  37. Forastiere A, Koch W, Trotti A, Sidransky D . Head and neck cancer. New Engl J Med 2001; 345: 1890–1900.

    Article  CAS  Google Scholar 

  38. Liggett WH Jr., Sewell DA, Rocco J, Ahrendt SA, Koch W, Sidransky D . p16 and p16 beta are potent growth suppressors of head and neck squamous carcinoma cells in vitro. Cancer Res 1996; 56: 4119–4123.

    CAS  PubMed  Google Scholar 

  39. Cai Y, Liu YF, Li SL, Pan YX, Zhu Y, Yu YN . [Cyclin E overexpression and centrosome amplification in squamous cell carcinoma of oral cavity]. Zhonghua Bing Li Xue Za Zhi 2007; 36: 375–378.

    CAS  PubMed  Google Scholar 

  40. Peeper DS, Shvarts A, Brummelkamp T, Douma S, Koh EY, Daley GQ et al. A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nat Cell Biol 2002; 4: 148–153.

    Article  CAS  Google Scholar 

  41. Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK . Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res 2004; 64: 622–630.

    Article  CAS  Google Scholar 

  42. Majhi PD, Lakshmanan I, Ponnusamy MP, Jain M, Das S, Kaur S et al. Pathobiological implications of MUC4 in non-small-cell lung cancer. J Thorac Oncol 2013; 8: 398–407.

    Article  CAS  Google Scholar 

  43. Urnov FD, Wolffe AP . Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 2001; 20: 2991–3006.

    Article  CAS  Google Scholar 

  44. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000; 406: 593–599.

    Article  CAS  Google Scholar 

  45. Ke XS, Qu Y, Rostad K, Li WC, Lin B, Halvorsen OJ et al. Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS ONE 2009; 4: e4687.

    Article  Google Scholar 

  46. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T . Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998; 391: 597–601.

    Article  CAS  Google Scholar 

  47. Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D . The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc Natl Acad Sci USA 1998; 95: 10493–10498.

    Article  CAS  Google Scholar 

  48. Hammarstedt L, Lindquist D, Dahlstrand H, Romanitan M, Dahlgren LO, Joneberg J et al. Human papillomavirus as a risk factor for the increase in incidence of tonsillar cancer. Int J Cancer 2006; 119: 2620–2623.

    Article  CAS  Google Scholar 

  49. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 2008; 20: 261–269.

    Article  Google Scholar 

  50. Nichols AC, Chan-Seng-Yue M, Yoo J, Xu W, Dhaliwal S, Basmaji J et al. A pilot study comparing HPV-positive and HPV-negative head and neck squamous cell carcinomas by whole exome sequencing. ISRN Oncol 2012; 2012: 809370.

    PubMed  PubMed Central  Google Scholar 

  51. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333: 1157–1160.

    Article  CAS  Google Scholar 

  52. Lleonart ME, Artero-Castro A, Kondoh H . Senescence induction; a possible cancer therapy. Mol Cancer 2009; 8: 3.

    Article  Google Scholar 

  53. Moniaux N, Varshney GC, Chauhan SC, Copin MC, Jain M, Wittel UA et al. Generation and characterization of anti-MUC4 monoclonal antibodies reactive with normal and cancer cells in humans. J Histochem Cytochem 2004; 52: 253–261.

    Article  CAS  Google Scholar 

  54. Macha MA, Rachagani S, Gupta S, Pai P, Ponnusamy MP, Batra SK et al. Guggulsterone decreases proliferation and metastatic behavior of pancreatic cancer cells by modulating JAK/STAT and Src/FAK signaling. Cancer Lett ; 341: 166–177.

    Article  CAS  Google Scholar 

  55. Ponnusamy MP, Singh AP, Jain M, Chakraborty S, Moniaux N, Batra SK . MUC4 activates HER2 signalling and enhances the motility of human ovarian cancer cells. Br J Cancer 2008; 99: 520–526.

    Article  CAS  Google Scholar 

  56. Chung IS, Son YI, Ko YJ, Baek CH, Cho JK, Jeong HS . Peritumor injections of purified tumstatin delay tumor growth and lymphatic metastasis in an orthotopic oral squamous cell carcinoma model. Oral Oncol 2008; 44: 1118–1126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the invaluable technical support from Ms Kavita Mallya and Hanan I Farghaly. We also thank Janice A Taylor and James R Talaska of the confocal laser scanning microscope core facility at UNMC for their support. This work was supported, in part, by the grants from National Institutes of Health (RO1 CA133774, U54 CA163120, UO1 CA111294, P50 CA 127297, R21 CA156037 and P20 RR021937).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Jain or S K Batra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macha, M., Rachagani, S., Pai, P. et al. MUC4 regulates cellular senescence in head and neck squamous cell carcinoma through p16/Rb pathway. Oncogene 34, 1698–1708 (2015). https://doi.org/10.1038/onc.2014.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.102

This article is cited by

Search

Quick links