Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling

Abstract

EGFR overexpression and chromosome 3p deletion are two frequent events in head and neck cancers. We previously mapped the smallest region of recurrent copy-number loss at 3p12.2-p14.1. LRIG1, a negative regulator of EGFR, was found at 3p14, and its copy-number loss correlated with poor clinical outcome. Inducible expression of LRIG1 in head and neck cancer TW01 cells, a line with low LRIG1 levels, suppressed cell proliferation in vitro and tumor growth in vivo. Gene expression profiling, quantitative RT–PCR, chromatin immunoprecipitation, and western blot analysis demonstrated that LRIG1 modulated extracellular matrix (ECM) remodeling and EGFR-MAPK-SPHK1 transduction pathway by suppressing expression of EGFR ligands/activators, MMPs and SPHK1. In addition, LRIG1 induction triggered cell morphology changes and integrin inactivation, which coupled with reduced SNAI2 expression. By contrast, knockdown of endogenous LRIG1 in TW06 cells, a line with normal LRIG1 levels, significantly enhanced cell proliferation, migration and invasiveness. Such tumor-promoting effects could be abolished by specific MAPK or SPHK1 inhibitors. Our data suggest LRIG1 as a tumor suppressor for head and neck cancers; LRIG1 downregulation in cancer cells enhances EGFR-MAPK-SPHK1 signaling and ECM remodeling activity, leading to malignant phenotypes of head and neck cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Pai SI, Westra WH . Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Ann Rev Pathol 2009; 4: 49–70.

    Article  CAS  Google Scholar 

  2. Fang CY, Lee CH, Wu CC, Chang YT, Yu SL, Chou SP et al. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer 2009; 124: 2016–2025.

    Article  CAS  Google Scholar 

  3. Sheu JJ, Lee CH, Ko JY, Tsao GS, Wu CC, Fang CY et al. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 are genomic markers for prognosis of advanced nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2009; 18: 2709–2716.

    Article  CAS  Google Scholar 

  4. Maseki S, Ijichi K, Tanaka H, Fujii M, Hasegawa Y, Ogawa T et al. Acquisition of EMT phenotype in the gefitinib-resistant cells of a head and neck squamous cell carcinoma cell line through Akt/GSK-3beta/snail signalling pathway. Br J Cancer 2012; 106: 1196–1204.

    Article  CAS  Google Scholar 

  5. Jin Y, Jin C, Lv M, Tsao SW, Zhu J, Wennerberg J et al. Karyotypic evolution and tumor progression in head and neck squamous cell carcinomas. Cancer Genet Cytogenet 2005; 156: 1–7.

    Article  CAS  Google Scholar 

  6. Koy S, Plaschke J, Luksch H, Friedrich K, Kuhlisch E, Eckelt U et al. Microsatellite instability and loss of heterozygosity in squamous cell carcinoma of the head and neck. Head Neck 2008; 30: 1105–1113.

    Article  Google Scholar 

  7. Huang Z, Desper R, Schaffer AA, Yin Z, Li X, Yao K . Construction of tree models for pathogenesis of nasopharyngeal carcinoma. Genes Chromosomes Cancer 2004; 40: 307–315.

    Article  CAS  Google Scholar 

  8. Hedman H, Nilsson J, Guo D, Henriksson R . Is LRIG1 a tumour suppressor gene at chromosome 3p14.3? Acta Oncol 2002; 41: 352–354.

    Article  CAS  Google Scholar 

  9. Thomasson M, Hedman H, Guo D, Ljungberg B, Henriksson R . LRIG1 and epidermal growth factor receptor in renal cell carcinoma: a quantitative RT—PCR and immunohistochemical analysis. Br J Cancer 2003; 89: 1285–1289.

    Article  CAS  Google Scholar 

  10. Lindstrom AK, Ekman K, Stendahl U, Tot T, Henriksson R, Hedman H et al. LRIG1 and squamous epithelial uterine cervical cancer: correlation to prognosis, other tumor markers, sex steroid hormones, and smoking. Int J Gynecol Cancer 2008; 18: 312–317.

    Article  CAS  Google Scholar 

  11. Stutz MA, Shattuck DL, Laederich MB, Carraway KL 3rd, Sweeney C . LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvIII. Oncogene 2008; 27: 5741–5752.

    Article  CAS  Google Scholar 

  12. Miller JK, Shattuck DL, Ingalla EQ, Yen L, Borowsky AD, Young LJ et al. Suppression of the negative regulator LRIG1 contributes to ErbB2 overexpression in breast cancer. Cancer Res 2008; 68: 8286–8294.

    Article  CAS  Google Scholar 

  13. Ljuslinder I, Golovleva I, Henriksson R, Grankvist K, Malmer B, Hedman H . Co-incidental increase in gene copy number of ERBB2 and LRIG1 in breast cancer. Breast Cancer Res 2009; 11: 403.

    Article  Google Scholar 

  14. Jensen KB, Jones J, Watt FM . A stem cell gene expression profile of human squamous cell carcinomas. Cancer Lett 2008; 272: 23–31.

    Article  CAS  Google Scholar 

  15. Krig SR, Frietze S, Simion C, Miller JK, Fry WH, Rafidi H et al. Lrig1 is an estrogen-regulated growth suppressor and correlates with longer relapse-free survival in ERalpha-positive breast cancer. Mol Cancer Res 2011; 9: 1406–1417.

    Article  CAS  Google Scholar 

  16. Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 2004; 23: 3270–3281.

    Article  CAS  Google Scholar 

  17. Yi W, Holmlund C, Nilsson J, Inui S, Lei T, Itami S et al. Paracrine regulation of growth factor signaling by shed leucine-rich repeats and immunoglobulin-like domains 1. Exp Cell Res 2011; 317: 504–512.

    Article  CAS  Google Scholar 

  18. Goldoni S, Iozzo RA, Kay P, Campbell S, McQuillan A, Agnew C et al. A soluble ectodomain of LRIG1 inhibits cancer cell growth by attenuating basal and ligand-dependent EGFR activity. Oncogene 2007; 26: 368–381.

    Article  CAS  Google Scholar 

  19. Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL 3rd et al. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 2004; 279: 47050–47056.

    Article  CAS  Google Scholar 

  20. Ye F, Gao Q, Xu T, Zeng L, Ou Y, Mao F et al. Upregulation of LRIG1 suppresses malignant glioma cell growth by attenuating EGFR activity. J Neurooncol 2009; 94: 183–194.

    Article  CAS  Google Scholar 

  21. Shattuck DL, Miller JK, Laederich M, Funes M, Petersen H, Carraway KL 3rd et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol 2007; 27: 1934–1946.

    Article  CAS  Google Scholar 

  22. Ledda F, Bieraugel O, Fard SS, Vilar M, Paratcha G . Lrig1 is an endogenous inhibitor of Ret receptor tyrosine kinase activation, downstream signaling, and biological responses to GDNF. J Neurosci 2008; 28: 39–49.

    Article  CAS  Google Scholar 

  23. Abhold EL, Kiang A, Rahimy E, Kuo SZ, Wang-Rodriguez J, Lopez JP et al. EGFR kinase promotes acquisition of stem cell-like properties: a potential therapeutic target in head and neck squamous cell carcinoma stem cells. PLoS One 2012; 7: e32459.

    Article  CAS  Google Scholar 

  24. Sheu JJ, Hua CH, Wan L, Lin YJ, Lai MT, Tseng HC et al. Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res 2009; 69: 2568–2576.

    Article  CAS  Google Scholar 

  25. Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 2003; 22: 5491–5500.

    Article  CAS  Google Scholar 

  26. Chang SJ, Wang TY, Lee YH, Tai CJ . Extracellular ATP activates nuclear translocation of ERK1/2 leading to the induction of matrix metalloproteinases expression in human endometrial stromal cells. J Endocrinol 2007; 193: 393–404.

    Article  CAS  Google Scholar 

  27. Shida D, Kitayama J, Yamaguchi H, Yamashita H, Mori K, Watanabe T et al. Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. FEBS Lett 2004; 577: 333–338.

    Article  CAS  Google Scholar 

  28. Pyne NJ, Pyne S . Sphingosine 1-phosphate and cancer. Nat Rev Cancer 2010; 10: 489–503.

    Article  CAS  Google Scholar 

  29. Pyne NJ, Tonelli F, Lim KG, Long JS, Edwards J, Pyne S . Sphingosine 1-phosphate signalling in cancer. Biochem Soc Trans 2012; 40: 94–100.

    Article  CAS  Google Scholar 

  30. Pyne S, Bittman R, Pyne NJ . Sphingosine kinase inhibitors and cancer: seeking the golden sword of Hercules. Cancer Res 2011; 71: 6576–6582.

    Article  CAS  Google Scholar 

  31. Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S . Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 2008; 9: 662–673.

    Article  CAS  Google Scholar 

  32. Ma BB, Poon TC, To KF, Zee B, Mo FK, Chan CM et al. Prognostic significance of tumor angiogenesis, Ki 67, p53 oncoprotein, epidermal growth factor receptor and HER2 receptor protein expression in undifferentiated nasopharyngeal carcinoma—a prospective study. Head Neck 2003; 25: 864–872.

    Article  Google Scholar 

  33. Ruan L, Li XH, Wan XX, Yi H, Li C, Li MY et al. Analysis of EGFR signaling pathway in nasopharyngeal carcinoma cells by quantitative phosphoproteomics. Proteome Sci 2011; 9: 35.

    Article  CAS  Google Scholar 

  34. Munger JS, Sheppard D . Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol 2011; 3: a005017.

    Article  Google Scholar 

  35. Gaide Chevronnay HP, Selvais C, Emonard H, Galant C, Marbaix E, Henriet P . Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta 2012; 1824: 146–156.

    Article  CAS  Google Scholar 

  36. Burtness B . The role of cetuximab in the treatment of squamous cell cancer of the head and neck. Expert Opin Biol Ther 2005; 5: 1085–1093.

    Article  CAS  Google Scholar 

  37. Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 2009; 4: 427–439.

    Article  CAS  Google Scholar 

  38. Watt FM, Jensen KB . Epidermal stem cell diversity and quiescence. EMBO Mol Med 2009; 1: 260–267.

    Article  CAS  Google Scholar 

  39. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012; 149: 146–158.

    Article  CAS  Google Scholar 

  40. Wong VW, Stange DE, Page ME, Buczacki S, Wabik A, Itami S et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 2012; 14: 401–408.

    Article  CAS  Google Scholar 

  41. Ordonez-Moran P, Huelsken J . Lrig1: a new master regulator of epithelial stem cells. EMBO J 2012; 31: 2064–2066.

    Article  CAS  Google Scholar 

  42. Milara J, Navarro R, Juan G, Peiro T, Serrano A, Ramon M et al. Sphingosine-1-phosphate is increased in patients with idiopathic pulmonary fibrosis and mediates epithelial to mesenchymal transition. Thorax 2012; 67: 147–156.

    Article  Google Scholar 

  43. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ . Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997; 139: 1861–1872.

    Article  CAS  Google Scholar 

  44. Song W, Jackson K, McGuire PG . Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev Biol 2000; 227: 606–617.

    Article  CAS  Google Scholar 

  45. Radisky ES, Radisky DC . Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 201–212.

    Article  Google Scholar 

  46. Hedman H, Henriksson R . LRIG inhibitors of growth factor signalling—double-edged swords in human cancer? Eur J Cancer 2007; 43: 676–682.

    Article  CAS  Google Scholar 

  47. Lin CT, Wong CI, Chan WY, Tzung KW, Ho JK, Hsu MM et al. Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest 1990; 62: 713–724.

    CAS  PubMed  Google Scholar 

  48. Chang H, Shyu KG, Lin S, Wang BW, Liu YC, Lee CC . Cell adhesion induces the plasminogen activator inhibitor-1 gene expression through phosphatidylinositol 3-kinase/Akt activation in anchorage dependent cells. Cell Commun Adhes 2002; 9: 239–247.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Mien-Chie Hung (MD Anderson Cancer Center, TX, USA) and Dr Yosef Yarden (Weizmann Institute, Israel) for their critical comments on this study, which was supported by grants from the National Science Council, Taiwan (NSC99-2320-B-400-009, NSC100-2325-B-400-014, NSC101-2320-B-039-006 and NSC101-2320-B-039-006), the National Health Research Institutes, Taiwan (CA-101-PP-01), China Medical University Hospital, Taiwan (DMR99-047), and the Department of Health, Taiwan (DOH101-TD-C-111-004 and DOH101-TD-C-111-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J J-C Sheu or C-H Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheu, JC., Lee, CC., Hua, CH. et al. LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling. Oncogene 33, 1375–1384 (2014). https://doi.org/10.1038/onc.2013.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.98

Keywords

This article is cited by

Search

Quick links