Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pin1 modulates ERα levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation

Abstract

Estrogen receptor-alpha (ERα) is an important biomarker used to classify and direct therapy decisions in breast cancer (BC). Both ERα protein and its transcript, ESR1, are used to predict response to tamoxifen therapy, yet certain tumors have discordant levels of ERα protein and ESR1, which is currently unexplained. Cellular ERα protein levels can be controlled post-translationally by the ubiquitin-proteasome pathway through a mechanism that depends on phosphorylation at residue S118. Phospho-S118 (pS118-ERα) is a substrate for the peptidyl prolyl isomerase, Pin1, which mediates cis-trans isomerization of the pS118-P119 bond to enhance ERα transcriptional function. Here, we demonstrate that Pin1 can increase ERα protein without affecting ESR1 transcript levels by inhibiting proteasome-dependent receptor degradation. Pin1 disrupts ERα ubiquitination by interfering with receptor interactions with the E3 ligase, E6AP, which also is shown to bind pS118-ERα. Quantitative in situ assessments of ERα protein, ESR1, and Pin1 in human tumors from a retrospective cohort show that Pin1 levels correlate with ERα protein but not to ESR1 levels. These data show that ERα protein is post-translationally regulated by Pin1 in a proportion of breast carcinomas. As Pin1 impacts both ERα protein levels and transactivation function, these data implicate Pin1 as a potential surrogate marker for predicting outcome of ERα-positive BC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 2010; 28: 509–518.

    Article  CAS  PubMed  Google Scholar 

  2. Early Breast Cancer Trialists' Collaborative Group EBCTCG, Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet 2005; 365: 1687–1717.

    Article  Google Scholar 

  3. Harrell JC, Dye WW, Allred DC, Jedlicka P, Spoelstra NS, Sartorius CA et al. Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 2006; 66: 9308–9315.

    Article  CAS  PubMed  Google Scholar 

  4. Harrell JC, Dye WW, Harvell DM, Pinto M, Jedlicka P, Sartorius CA et al. Estrogen insensitivity in a model of estrogen receptor positive breast cancer lymph node metastasis. Cancer Res 2007; 67: 10582–10591.

    Article  CAS  PubMed  Google Scholar 

  5. Khan SA, Rogers MA, Khurana KK, Meguid MM, Numann PJ . Estrogen receptor expression in benign breast epithelium and breast cancer risk. J Natl Cancer Inst 1998; 90: 37–42.

    Article  CAS  PubMed  Google Scholar 

  6. Frech MS, Halama ED, Tilli MT, Singh B, Gunther EJ, Chodosh LA et al. Deregulated estrogen receptor alpha expression in mammary epithelial cells of transgenic mice results in the development of ductal carcinoma in situ. Cancer Res 2005; 65: 681–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fowler AM, Solodin N, Preisler-Mashek MT, Zhang P, Lee AV, Alarid ET . Increases in estrogen receptor-alpha concentration in breast cancer cells promote serine 118/104/106-independent AF-1 transactivation and growth in the absence of estrogen. FASEB J 2004; 18: 81–93.

    Article  CAS  PubMed  Google Scholar 

  8. Fowler AM, Solodin NM, Valley CC, Alarid ET . Altered target gene regulation controlled by estrogen receptor-alpha concentration. Mol Endocrinol 2006; 20: 291–301.

    Article  CAS  PubMed  Google Scholar 

  9. Bordeaux JM, Cheng H, Welsh AW, Haffty BG, Lannin DR, Wu X et al. Quantitative in situ measurement of estrogen receptor mRNA predicts response to tamoxifen. PLoS One 2012; 7: e36559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gong Y, Yan K, Lin F, Anderson K, Sotiriou C, Andre F et al. Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol 2007; 8: 203–211.

    Article  CAS  PubMed  Google Scholar 

  11. Tora L, White J, Brou C, Tasset D, Webster N, Scheer E et al. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 1989; 59: 477–487.

    Article  CAS  PubMed  Google Scholar 

  12. Valley CC, Metivier R, Solodin NM, Fowler AM, Mashek MT, Hill L et al. Differential regulation of estrogen-inducible proteolysis and transcription by the estrogen receptor alpha N terminus. Mol Cell Biol 2005; 25: 5417–5428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu KP, Finn G, Lee TH, Nicholson LK . Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 2007; 3: 619–629.

    Article  CAS  PubMed  Google Scholar 

  14. Lu KP, Liou YC, Zhou XZ . Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 2002; 12: 164–172.

    Article  CAS  PubMed  Google Scholar 

  15. Lu KP, Zhou XZ . The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 2007; 8: 904–916.

    Article  CAS  PubMed  Google Scholar 

  16. Wulf G, Finn G, Suizu F, Lu KP . Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 2005; 7: 435–441.

    Article  CAS  PubMed  Google Scholar 

  17. Ranganathan R, Lu KP, Hunter T, Noel JP . Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 1997; 89: 875–886.

    Article  CAS  PubMed  Google Scholar 

  18. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 1997; 278: 1957–1960.

    Article  CAS  PubMed  Google Scholar 

  19. Rajbhandari P, Finn G, Solodin NM, Singarapu KK, Sahu SC, Markley JL et al. Regulation of estrogen receptor alpha N-terminus conformation and function by peptidyl prolyl isomerase Pin1. Mol Cell Biol 2012; 32: 445–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wulf G, Ryo A, Liou YC, Lu KP . The prolyl isomerase Pin1 in breast development and cancer. Breast Cancer Res 2003; 5: 76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V et al. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. Embo J 2001; 20: 3459–3472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wulf G, Garg P, Liou YC, Iglehart D, Lu KP . Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. Embo J 2004; 23: 3397–3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 2000; 6: 873–883.

    Article  CAS  PubMed  Google Scholar 

  24. Bhatt S, Xiao Z, Meng Z, Katzenellenbogen BS . Phosphorylation by p38 mitogen-activated protein kinase promotes estrogen receptor alpha turnover and functional activity via the SCF(Skp2) proteasomal complex. Mol Cell Biol 2012; 32: 1928–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eakin CM, Maccoss MJ, Finney GL, Klevit RE . Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 2007; 104: 5794–5799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li L, Li Z, Howley PM, Sacks DB . E6AP and calmodulin reciprocally regulate estrogen receptor stability. J Biol Chem 2006; 281: 1978–1985.

    Article  CAS  PubMed  Google Scholar 

  27. Nakajima A, Maruyama S, Bohgaki M, Miyajima N, Tsukiyama T, Sakuragi N et al. Ligand-dependent transcription of estrogen receptor alpha is mediated by the ubiquitin ligase EFP. Biochem Biophys Res Commun 2007; 357: 245–251.

    Article  CAS  PubMed  Google Scholar 

  28. Tateishi Y, Kawabe Y, Chiba T, Murata S, Ichikawa K, Murayama A et al. Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. Embo J 2004; 23: 4813–4823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H et al. Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 2007; 67: 5513–5521.

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, Zhou W, Kaliappan K, Nawaz Z, Slingerland JM . ERalpha phosphorylation at Y537 by Src triggers E6-AP-ERalpha binding, ERalpha ubiquitylation, promoter occupancy, and target gene expression. Mol Endocrinol 2012; 26: 1567–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramamoorthy S, Nawaz Z . E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors. Nucl Recept Signal 2008; 6: e006.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hennig L, Christner C, Kipping M, Schelbert B, Rucknagel KP, Grabley S et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 1998; 37: 5953–5960.

    Article  CAS  PubMed  Google Scholar 

  33. Min SH, Lau AW, Lee TH, Inuzuka H, Wei S, Huang P et al. Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol Cell 2012; 46: 771–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou W, Yang Q, Low CB, Karthik BC, Wang Y, Ryo A et al. Pin1 catalyzes conformational changes of Thr-187 in p27Kip1 and mediates its stability through a polyubiquitination process. J Biol Chem 2009; 284: 23980–23988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fujimoto Y, Shiraki T, Horiuchi Y, Waku T, Shigenaga A, Otaka A et al. Proline cis/trans-isomerase Pin1 regulates peroxisome proliferator-activated receptor gamma activity through the direct binding to the activation function-1 domain. J Biol Chem 2010; 285: 3126–3132.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng J, Zhang C, Shapiro DJ . A functional serine 118 phosphorylation site in estrogen receptor-alpha is required for down-regulation of gene expression by 17beta-estradiol and 4-hydroxytamoxifen. Endocrinology 2007; 148: 4634–4641.

    Article  CAS  PubMed  Google Scholar 

  37. Duplessis TT, Williams CC, Hill SM, Rowan BG . Phosphorylation of Estrogen Receptor alpha at serine 118 directs recruitment of promoter complexes and gene-specific transcription. Endocrinology 2011; 152: 2517–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lonard DM, Nawaz Z, Smith CL, O’Malley BW . The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 2000; 5: 939–948.

    Article  CAS  PubMed  Google Scholar 

  39. Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 2003; 11: 695–707.

    Article  CAS  PubMed  Google Scholar 

  40. Muratani M, Tansey WP . How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003; 4: 192–201.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Zong H, Chi Y, Hong Y, Yang Y, Zou W et al. Repression of estrogen receptor alpha by CDK11p58 through promoting its ubiquitin-proteasome degradation. J Biochem 2009; 145: 331–343.

    Article  CAS  PubMed  Google Scholar 

  42. Wei X, Xu H, Kufe D . MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell 2006; 21: 295–305.

    Article  CAS  PubMed  Google Scholar 

  43. Borras M, Hardy L, Lempereur F, el Khissiin AH, Legros N, Gol-Winkler R et al. Estradiol-induced down-regulation of estrogen receptor. Effect of various modulators of protein synthesis and expression. J Steroid Biochem Mol Biol 1994; 48: 325–336.

    Article  CAS  PubMed  Google Scholar 

  44. Lu Q, Surks HK, Ebling H, Baur WE, Brown D, Pallas DC et al. Regulation of estrogen receptor alpha-mediated transcription by a direct interaction with protein phosphatase 2A. J Biol Chem 2003; 278: 4639–4645.

    Article  CAS  PubMed  Google Scholar 

  45. Marsaud V, Gougelet A, Maillard S, Renoir JM . Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor alpha (ERalpha), differentially affect ERalpha extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Mol Endocrinol 2003; 17: 2013–2027.

    Article  CAS  PubMed  Google Scholar 

  46. Kato K, Ueoka Y, Hachiya T, Nishida J, Wake N . Contribution of enhanced transcriptional activation by ER to [12Val] K-Ras mediated NIH3T3 cell transformation. Oncogene 1997; 15: 3037–3046.

    Article  CAS  PubMed  Google Scholar 

  47. Atsriku C, Britton DJ, Held JM, Schilling B, Scott GK, Gibson BW et al. Systematic mapping of posttranslational modifications in human estrogen receptor-alpha with emphasis on novel phosphorylation sites. Mol Cell Proteomics 2009; 8: 467–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khanal P, Yun HJ, Lim SC, Ahn SG, Yoon HE, Kang KW et al. Proyl isomerase Pin1 facilitates ubiquitin-mediated degradation of cyclin-dependent kinase 10 to induce tamoxifen resistance in breast cancer cells. Oncogene 2012; 31: 3845–3856.

    Article  CAS  PubMed  Google Scholar 

  49. Namgoong GM, Khanal P, Cho HG, Lim SC, Oh YK, Kang BS et al. The prolyl-isomerase pin1 induces LC-3 expression and mediates tamoxifen resistance in breast cancer. J Biol Chem 2010; 285: 23829–23841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stanya KJ, Liu Y, Means AR, Kao HY . Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. J Cell Biol 2008; 183: 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alarid ET . Lives and times of nuclear receptors. Mol Endocrinol 2006; 20: 1972–1981.

    Article  CAS  PubMed  Google Scholar 

  52. Faus H, Haendler B . Post-translational modifications of steroid receptors. Biomed Pharmacother 2006; 60: 520–528.

    Article  CAS  PubMed  Google Scholar 

  53. Rochette-Egly C . Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal 2003; 15: 355–366.

    Article  CAS  PubMed  Google Scholar 

  54. Chen HZ, Li L, Wang WJ, Du XD, Wen Q, He JP et al. Prolyl isomerase Pin1 stabilizes and activates orphan nuclear receptor TR3 to promote mitogenesis. Oncogene 2012; 31: 2876–2887.

    Article  CAS  PubMed  Google Scholar 

  55. Mantovani F, Piazza S, Gostissa M, Strano S, Zacchi P, Mantovani R et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol Cell 2004; 14: 625–636.

    Article  CAS  PubMed  Google Scholar 

  56. Pulikkan JA, Dengler V, Peer Zada AA, Kawasaki A, Geletu M, Pasalic Z et al. Elevated PIN1 expression by C/EBPalpha-p30 blocks C/EBPalpha-induced granulocytic differentiation through c-Jun in AML. Leukemia 2010; 24: 914–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP . Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 2001; 3: 793–801.

    Article  CAS  PubMed  Google Scholar 

  58. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G et al. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 2003; 12: 1413–1426.

    Article  CAS  PubMed  Google Scholar 

  59. Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP . Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem 2002; 277: 47976–47979.

    Article  CAS  PubMed  Google Scholar 

  60. Gao X, Mohsin SK, Gatalica Z, Fu G, Sharma P, Nawaz Z . Decreased expression of e6-associated protein in breast and prostate carcinomas. Endocrinology 2005; 146: 1707–1712.

    Article  CAS  PubMed  Google Scholar 

  61. Ramamoorthy S, Tufail R, Hokayem JE, Jorda M, Zhao W, Reis Z et al. Overexpression of ligase defective E6-associated protein, E6-AP, results in mammary tumorigenesis. Breast Cancer Res Treat 2012; 132: 97–108.

    Article  CAS  PubMed  Google Scholar 

  62. Picard N, Charbonneau C, Sanchez M, Licznar A, Busson M, Lazennec G et al. Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-associated protein ubiquitin ligase recruitment to the estrogen receptor beta. Mol Endocrinol 2008; 22: 317–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lannigan DA . Estrogen receptor phosphorylation. Steroids 2003; 68: 1–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kim C, Tang G, Pogue-Geile KL, Costantino JP, Baehner FL, Baker J et al. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer. J Clin Oncol 2011; 29: 4160–4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P . Functional domains of the human estrogen receptor. Cell 1987; 51: 941–951.

    Article  CAS  PubMed  Google Scholar 

  66. Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 2002; 419: 849–853.

    Article  CAS  PubMed  Google Scholar 

  67. Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA 2002; 99: 1335–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP . The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999; 399: 784–788.

    Article  CAS  PubMed  Google Scholar 

  69. Ellison-Zelski SJ, Solodin NM, Alarid ET . Repression of ESR1 through actions of estrogen receptor alpha and Sin3A at the proximal promoter. Mol Cell Biol 2009; 29: 4949–4958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  71. Welsh AW, Moeder CB, Kumar S, Gershkovich P, Alarid ET, Harigopal M et al. Standardization of estrogen receptor measurement in breast cancer suggests false-negative results are a function of threshold intensity rather than percentage of positive cells. J Clin Oncol 2011; 29: 2978–2984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Camp RL, Chung GG, Rimm DL . Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 2002; 8: 1323–1327.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank McArdle Laboratories for Cancer Research for support of this project. We also thank the UW Carbone Comprehensive Cancer Center (UWCCC) for use of its shared services to complete this research. We thank Drs Pierre Chambon, Vladimir Spiegelman, Robert Kalejta and Greg Finn for providing us appropriate expression plasmids and reagents. We also thank Dr Wei Xu for insightful comments. This work was supported by NIH grants CA159578 (to E.T.A.) and T32 CA009135 (to P.R.) and a sponsored research award from Genoptix/Novartis (to D.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E T Alarid.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajbhandari, P., Schalper, K., Solodin, N. et al. Pin1 modulates ERα levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation. Oncogene 33, 1438–1447 (2014). https://doi.org/10.1038/onc.2013.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.78

Keywords

This article is cited by

Search

Quick links