Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53 suppresses carcinoma progression by inhibiting mTOR pathway activation

Abstract

Genetic alterations in human cancers and murine models indicate that retinoblastoma (Rb) and p53 have critical tumor suppressive functions in retinoblastoma, a tumor of neural origin, and neuroendocrine tumors including small cell lung cancer and medullary thyroid cancer (MTC). Rb inactivation is the initiating lesion in retinoblastoma and current models propose that induction of apoptosis is a key p53 tumor suppressive function. Genetic studies in mice, however, indicate that other undefined p53 tumor suppressive functions are operative in vivo. How p53 loss cooperates with Rb inactivation to promote carcinogenesis is also not fully understood. In the current study, genetically engineered mice were generated to determine the role of Rb and p53 in MTC pathogenesis and test the hypothesis that p53 suppresses carcinogenesis by inhibiting mammalian target of rapamycin (mTOR) signaling. Conditional Rb ablation resulted in thyroid tumors mimicking human MTC, and additional p53 loss led to rapid tumor progression. p53 suppressed tumorigenesis by inhibiting cell cycle progression, but did not induce apoptosis. On the contrary, p53 loss led to increased apoptosis that had to be overcome for tumor progression. The mTOR activity was markedly increased in p53-deficient tumors and rapamycin treatment suppressed tumor cell growth, identifying mTOR inhibition as a critical p53 tumor suppressive function. Rapamycin treatment did not result in AKT/mitogen-activated protein kinase activation, providing evidence that this feedback mechanism operative in other cancers is not a general response to mTORC1 inhibition. Together, these studies provide mechanistic links between genetic alterations and aberrant signaling pathways critical in carcinogenesis, and identify essential Rb and p53 tumor suppressive functions in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Levine AJ, Oren M . The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9: 749–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stiewe T . The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 2007; 7: 165–168.

    Article  CAS  PubMed  Google Scholar 

  3. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  4. Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 2004; 36: 63–68.

    Article  CAS  PubMed  Google Scholar 

  5. Feng Z, Levine AJ . The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 2010; 20: 427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hasty P, Sharp ZD, Curiel TJ, Campisi J . mTORC1 and p53: clash of the gods? Cell Cycle 2013; 12: 20–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conkrite K, Sundby M, Mu D, Mukai S, MacPherson D . Cooperation between Rb and Arf in suppressing mouse retinoblastoma. J Clin Invest 2012; 122: 1726–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C et al. Inactivation of the p53 pathway in retinoblastoma. Nature 2006; 444: 61–66.

    Article  CAS  PubMed  Google Scholar 

  9. Wikenheiser-Brokamp KA . Retinoblastoma regulatory pathway in lung cancer. Curr Mol Med 2006; 6: 783–793.

    CAS  PubMed  Google Scholar 

  10. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A . Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 2003; 4: 181–189.

    Article  CAS  PubMed  Google Scholar 

  11. Harvey M, Vogel H, Lee EY, Bradley A, Donehower LA . Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995; 55: 1146–1151.

    CAS  PubMed  Google Scholar 

  12. Nikitin AY, Juarez-Perez MI, Li S, Huang L, Lee WH . RB-mediated suppression of spontaneous multiple neuroendocrine neoplasia and lung metastases in Rb+/- mice. Proc Natl Acad Sci USA 1999; 96: 3916–3921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T . Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 1994; 7: 480–484.

    Article  CAS  PubMed  Google Scholar 

  14. Cerrato A, De Falco V, Santoro M . Molecular genetics of medullary thyroid carcinoma: the quest for novel therapeutic targets. J Mol Endocrinol 2009; 43: 143–155.

    Article  CAS  PubMed  Google Scholar 

  15. Pitt SC, Moley JF . Medullary, anaplastic, and metastatic cancers of the thyroid. Semin Oncol 2010; 37: 567–579.

    Article  PubMed  Google Scholar 

  16. Sippel RS, Kunnimalaiyaan M, Chen H . Current management of medullary thyroid cancer. Oncologist 2008; 13: 539–547.

    Article  PubMed  Google Scholar 

  17. Wu LS, Roman SA, Sosa JA . Medullary thyroid cancer: an update of new guidelines and recent developments. Curr Opin Oncol 2011; 23: 22–27.

    Article  PubMed  Google Scholar 

  18. Almeida MQ, Hoff AO . Recent advances in the molecular pathogenesis and targeted therapies of medullary thyroid carcinoma. Curr Opin Oncol 2012; 24: 229–234.

    Article  CAS  PubMed  Google Scholar 

  19. Smith-Hicks CL, Sizer KC, Powers JF, Tischler AS, Costantini F . C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J 2000; 19: 612–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moura MM, Cavaco BM, Pinto AE, Leite V . High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metabol 2011; 96: E863–E868.

    Article  CAS  Google Scholar 

  21. Rapa I, Saggiorato E, Giachino D, Palestini N, Orlandi F, Papotti M et al. Mammalian target of rapamycin pathway activation is associated to RET mutation status in medullary thyroid carcinoma. J Clin Endocrinol Metabol 2011; 96: 2146–2153.

    Article  CAS  Google Scholar 

  22. Goutas N, Vlachodimitropoulos D, Bouka M, Lazaris AC, Nasioulas G, Gazouli M . BRAF and K-RAS mutation in a Greek papillary and medullary thyroid carcinoma cohort. Anticancer Res 2008; 28: 305–308.

    PubMed  Google Scholar 

  23. Kouvaraki MA, Liakou C, Paraschi A, Dimas K, Patsouris E, Tseleni-Balafouta S et al. Activation of mTOR signaling in medullary and aggressive papillary thyroid carcinomas. Surgery 2011; 150: 1258–1265.

    Article  PubMed  Google Scholar 

  24. Tamburrino A, Molinolo AA, Salerno P, Chernock RD, Raffeld M, Xi L et al. Activation of the mTOR pathway in primary medullary thyroid carcinoma and lymph node metastases. Clin Cancer Res 2012; 18: 3532–3540.

    Article  CAS  PubMed  Google Scholar 

  25. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Simpson DS, Mason-Richie NA, Gettler CA, Wikenheiser-Brokamp KA . Retinoblastoma family proteins have distinct functions in pulmonary epithelial cells in vivo critical for suppressing cell growth and tumorigenesis. Cancer Res 2009; 69: 8733–8741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perl AK, Wert SE, Nagy A, Lobe CG, Whitsett JA . Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA 2002; 99: 10482–10487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matthew EM, Hart LS, Astrinidis A, Navaraj A, Dolloff NG, Dicker DT et al. The p53 target Plk2 interacts with TSC proteins impacting mTOR signaling, tumor growth and chemosensitivity under hypoxic conditions. Cell Cycle 2009; 8: 4168–4175.

    Article  CAS  PubMed  Google Scholar 

  29. Wikenheiser-Brokamp KA . Rb family proteins differentially regulate distinct cell lineages during epithelial development. Development 2004; 131: 4299–4310.

    Article  CAS  PubMed  Google Scholar 

  30. Frisk T, Zedenius J, Lundberg J, Wallin G, Kytola S, Larsson C . CGH alterations in medullary thyroid carcinomas in relation to the RET M918T mutation and clinical outcome. Int J Oncol 2001; 18: 1219–1225.

    CAS  PubMed  Google Scholar 

  31. Hemmer S, Wasenius VM, Knuutila S, Franssila K, Joensuu H . DNA copy number changes in thyroid carcinoma. Am J Pathol 1999; 154: 1539–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marsh DJ, Theodosopoulos G, Martin-Schulte K, Richardson AL, Philips J, Roher HD et al. Genome-wide copy number imbalances identified in familial and sporadic medullary thyroid carcinoma. J Clin Endocrinol Metabol 2003; 88: 1866–1872.

    Article  CAS  Google Scholar 

  33. Anwar F, Emond MJ, Schmidt RA, Hwang HC, Bronner MP . Retinoblastoma expression in thyroid neoplasms. Mod Pathol 2000; 13: 562–569.

    Article  CAS  PubMed  Google Scholar 

  34. Basolo F, Caligo MA, Pinchera A, Fedeli F, Baldanzi A, Miccoli P et al. Cyclin D1 overexpression in thyroid carcinomas: relation with clinico-pathological parameters, retinoblastoma gene product, and Ki67 labeling index. Thyroid 2000; 10: 741–746.

    Article  CAS  PubMed  Google Scholar 

  35. Holm R, Nesland JM . Retinoblastoma and p53 tumour suppressor gene protein expression in carcinomas of the thyroid gland. J Pathol 1994; 172: 267–272.

    Article  CAS  PubMed  Google Scholar 

  36. Herfarth KK, Wick MR, Marshall HN, Gartner E, Lum S, Moley JF . Absence of TP53 alterations in pheochromocytomas and medullary thyroid carcinomas. Genes Chromosomes Cancer 1997; 20: 24–29.

    Article  CAS  PubMed  Google Scholar 

  37. Hinze R, Gimm O, Taubert H, Bauer G, Dralle H, Holzhausen HJ et al. Regulation of proliferation and apoptosis in sporadic and hereditary medullary thyroid carcinomas and their putative precursor lesions. Virch Arch 2000; 437: 256–263.

    Article  CAS  Google Scholar 

  38. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Saito S, Itakura M . Role of p53 mutations in endocrine tumorigenesis: mutation detection by polymerase chain reaction-single strand conformation polymorphism. Cancer Res 1992; 52: 5061–5064.

    CAS  PubMed  Google Scholar 

  39. Pavelic K, Dedivitis RA, Kapitanovic S, Cacev T, Guirado CR, Danic D et al. Molecular genetic alterations of FHIT and p53 genes in benign and malignant thyroid gland lesions. Mut Res 2006; 599: 45–57.

    Article  CAS  Google Scholar 

  40. Sheikh HA, Tometsko M, Niehouse L, Aldeeb D, Swalsky P, Finkelstein S et al. Molecular genotyping of medullary thyroid carcinoma can predict tumor recurrence. Am J Surg Pathol 2004; 28: 101–106.

    Article  PubMed  Google Scholar 

  41. Wander SA, Hennessy BT, Slingerland JM . Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 2011; 121: 1231–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Freed-Pastor WA, Prives C . Mutant p53: one name, many proteins. Genes Dev 2012; 26: 1268–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Faggiano A, Ramundo V, Dicitore A, Castiglioni S, Borghi MO, Severino R et al. Everolimus is an active agent in medullary thyroid cancer: a clinical and in vitro study. J Cell Mol Med 2012; 16: 1563–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grozinsky-Glasberg S, Rubinfeld H, Nordenberg Y, Gorshtein A, Praiss M, Kendler E et al. The rapamycin-derivative RAD001 (everolimus) inhibits cell viability and interacts with the Akt-mTOR-p70S6K pathway in human medullary thyroid carcinoma cells. Mol Cell Endocrinol 2010; 315: 87–94.

    Article  CAS  PubMed  Google Scholar 

  46. Dong M, Phan AT, Yao JC . New strategies for advanced neuroendocrine tumors in the era of targeted therapy. Clin Cancer Res 2012; 18: 1830–1836.

    Article  CAS  PubMed  Google Scholar 

  47. Vilar E, Perez-Garcia J, Tabernero J . Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Mol Cancer Ther 2011; 10: 395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A . Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 2000; 14: 994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wikenheiser KA, Vorbroker DK, Rice WR, Clark JC, Bachurski CJ, Oie HK et al. Production of immortalized distal respiratory epithelial cell lines from surfactant protein C/simian virus 40 large tumor antigen transgenic mice. Proc Natl Acad Sci USA 1993; 90: 11029–11033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wise-Draper TM, Allen HV, Jones EE, Habash KB, Matsuo H, Wells SI . Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol 2006; 26: 7506–7519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mingyan Yang and Susan E Wert for technical expertise, Veterinary Services for excellent animal care, and Susanne I Wells and Elizabeth E Hoskins for reagents and technical expertise. This work was supported by grants from the American Cancer Society RSG-10-194-01-TBG and NIH/NHLBI RO1 HL079193 (to KAW-B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K A Wikenheiser-Brokamp.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akeno, N., Miller, A., Ma, X. et al. p53 suppresses carcinoma progression by inhibiting mTOR pathway activation. Oncogene 34, 589–599 (2015). https://doi.org/10.1038/onc.2013.589

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.589

Keywords

This article is cited by

Search

Quick links