Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Casein kinase 1 regulates Sprouty2 in FGF–ERK signaling

Abstract

Sprouty2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase signaling, and is implicated as a tumor suppressor. SPRY2 inhibits FGF–RAS–ERK signaling by binding to growth factor receptor bound protein 2 (GRB2) during fibroblast growth factor receptor (FGFR) activation, disrupting the GRB2–SOS (son of sevenless) complex that transduces signals from FGFR to RAS. SPRY2 binding to GRB2 is modulated by phosphorylation but the key regulatory kinase(s) are not known. Prior studies identified the frequent presence of CK1 phosphorylation motifs on SPRY2. We therefore tested if CK1 has a role in SPRY2 phosphorylation and function. Loss of CK1 binding and inhibition of CK1 activity by two structurally distinct small molecules abrogated SPRY2 inhibition of FGF–ERK signaling, leading to decreased SPRY2 interaction with GRB2. Moreover, CK1 activity and binding are necessary for SPRY2 inhibition of FGF-stimulated neurite outgrowth in PC12 cells. Consistent with its proposed role as an inhibitor of FGF signaling, we find that CSNK1E transcript abundance negatively correlates with FGF1/FGF7 message in human gastric cancer samples. Modulation of CK1 activity may be therapeutically useful in the treatment of FGF/SPRY2-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lemmon MA, Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117–1134.

    Article  CAS  Google Scholar 

  2. Casaletto JB, McClatchey AI . Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 2012; 12: 387–400.

    Article  CAS  Google Scholar 

  3. Casci T, Vinos J, Freeman M . Sprouty an intracellular inhibitor of Ras signaling. Cell 1999; 96: 655–665.

    Article  CAS  Google Scholar 

  4. Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G . Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 2001; 152: 1087–1098.

    Article  CAS  Google Scholar 

  5. Yusoff P, Lao DH, Ong SH, Wong ES, Lim J, Lo TL et al. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J Biol Chem 2002; 277: 3195–3201.

    Article  CAS  Google Scholar 

  6. Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY et al. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 2002; 21: 4796–4808.

    Article  CAS  Google Scholar 

  7. Hausott B, Vallant N, Auer M, Yang L, Dai F, Brand-Saberi B et al. Sprouty2 down-regulation promotes axon growth by adult sensory neurons. Mol Cell Neurosci 2009; 42: 328–340.

    Article  CAS  Google Scholar 

  8. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA . sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 1998; 92: 253–263.

    Article  CAS  Google Scholar 

  9. Metzger RJ, Klein OD, Martin GR, Krasnow MA . The branching programme of mouse lung development. Nature 2008; 453: 745–750.

    Article  CAS  Google Scholar 

  10. Tang N, Marshall WF, McMahon M, Metzger RJ, Martin GR . Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Science 2011; 333: 342–345.

    Article  CAS  Google Scholar 

  11. Lo TL, Yusoff P, Fong CW, Guo K, McCaw BJ, Phillips WA et al. The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res 2004; 64: 6127–6136.

    Article  CAS  Google Scholar 

  12. Fong CW, Chua MS, McKie AB, Ling SH, Mason V, Li R et al. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res 2006; 66: 2048–2058.

    Article  CAS  Google Scholar 

  13. Patel R, Gao M, Ahmad I, Fleming J, Singh LB, Rai TS et al. Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. J Clin Invest 2013; 123: 1157–1175.

    Article  CAS  Google Scholar 

  14. Edwin F, Anderson K, Ying C, Patel TB . Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 2009; 76: 679–691.

    Article  CAS  Google Scholar 

  15. Guy GR, Jackson RA, Yusoff P, Chow SY . Sprouty proteins: modified modulators, matchmakers or missing links? J Endocrinol 2009; 203: 191–202.

    Article  CAS  Google Scholar 

  16. Turner N, Grose R . Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 2010; 10: 116–129.

    Article  CAS  Google Scholar 

  17. Lao DH, Chandramouli S, Yusoff P, Fong CW, Saw TY, Tai LP et al. A Src homology 3-binding sequence on the C terminus of Sprouty2 is necessary for inhibition of the Ras/ERK pathway downstream of fibroblast growth factor receptor stimulation. J Biol Chem 2006; 281: 29993–30000.

    Article  CAS  Google Scholar 

  18. Hanafusa H, Torii S, Yasunaga T, Nishida E . Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002; 4: 850–858.

    Article  CAS  Google Scholar 

  19. Lao DH, Yusoff P, Chandramouli S, Philp RJ, Fong CW, Jackson RA et al. Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J Biol Chem 2007; 282: 9117–9126.

    Article  CAS  Google Scholar 

  20. DaSilva J, Xu L, Kim HJ, Miller WT, Bar-Sagi D . Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 2006; 26: 1898–1907.

    Article  CAS  Google Scholar 

  21. Chandramouli S, Yu CY, Yusoff P, Lao DH, Leong HF, Mizuno K et al. Tesk1 interacts with Spry2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. J Biol Chem 2008; 283: 1679–1691.

    Article  CAS  Google Scholar 

  22. Aranda S, Alvarez M, Turro S, Laguna A, de la Luna S . Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Mol Cell Biol 2008; 28: 5899–5911.

    Article  CAS  Google Scholar 

  23. Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ . Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem 1990; 265: 14264–14269.

    CAS  PubMed  Google Scholar 

  24. Cegielska A, Virshup DM . Control of simian virus 40 DNA replication by the HeLa cell nuclear kinase casein kinase I. Mol Cell Biol 1993; 13: 1202–1211.

    Article  CAS  Google Scholar 

  25. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001; 291: 1040–1043.

    Article  CAS  Google Scholar 

  26. Rubinfeld B, Tice DA, Polakis P . Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1epsilon. J Biol Chem 2001; 276: 39037–39045.

    Article  CAS  Google Scholar 

  27. Okamura H, Garcia-Rodriguez C, Martinson H, Qin J, Virshup DM, Rao A . A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol Cell Biol 2004; 24: 4184–4195.

    Article  CAS  Google Scholar 

  28. Badura L, Swanson T, Adamowicz W, Adams J, Cianfrogna J, Fisher K et al. An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions. J Pharmacol Exp Ther 2007; 322: 730–738.

    Article  CAS  Google Scholar 

  29. Cheong JK, Nguyen TH, Wang H, Tan P, Voorhoeve PM, Lee SH et al. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1delta/varepsilon and Wnt/beta-catenin independent inhibition of mitotic spindle formation. Oncogene 2011; 30: 2558–2569.

    Article  CAS  Google Scholar 

  30. Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M et al. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 2002; 16: 1066–1076.

    Article  CAS  Google Scholar 

  31. Lord C, Bhandari D, Menon S, Ghassemian M, Nycz D, Hay J et al. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 2011; 473: 181–186.

    Article  CAS  Google Scholar 

  32. Rena G, Bain J, Elliott M, Cohen P . D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep 2004; 5: 60–65.

    Article  CAS  Google Scholar 

  33. Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW et al. The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol 2002; 22: 7953–7966.

    Article  CAS  Google Scholar 

  34. Lim J, Wong ES, Ong SH, Yusoff P, Low BC, Guy GR . Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J Biol Chem 2000; 275: 32837–32845.

    Article  CAS  Google Scholar 

  35. Gross I, Armant O, Benosman S, de Aguilar JL, Freund JN, Kedinger M et al. Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death Differ 2007; 14: 1802–1812.

    Article  CAS  Google Scholar 

  36. Greer YE, Rubin JS . Casein kinase 1 delta functions at the centrosome to mediate Wnt-3a-dependent neurite outgrowth. J Cell Biol 2011; 192: 993–1004.

    Article  CAS  Google Scholar 

  37. Birrer MJ, Johnson ME, Hao K, Wong KK, Park DC, Bell A et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol 2007; 25: 2281–2287.

    Article  CAS  Google Scholar 

  38. Smith G, Ng MT, Shepherd L, Herrington CS, Gourley C, Ferguson MJ et al. Individuality in FGF1 expression significantly influences platinum resistance and progression-free survival in ovarian cancer. Br J Cancer 2012; 107: 1327–1336.

    Article  CAS  Google Scholar 

  39. Nakazawa K, Yashiro M, Hirakawa K . Keratinocyte growth factor produced by gastric fibroblasts specifically stimulates proliferation of cancer cells from scirrhous gastric carcinoma. Cancer Res 2003; 63: 8848–8852.

    CAS  PubMed  Google Scholar 

  40. Toyokawa T, Yashiro M, Hirakawa K . Co-expression of keratinocyte growth factor and K-sam is an independent prognostic factor in gastric carcinoma. Oncol Rep 2009; 21: 875–880.

    PubMed  Google Scholar 

  41. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet 2009; 5: e1000676.

    Article  Google Scholar 

  42. Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S et al. Identification of molecular subtypes of gastric cancer with different responses to pi3-kinase inhibitors and 5-fluorouracil. Gastroenterology 2013; 145: 554–565.

    Article  CAS  Google Scholar 

  43. Cheong JK, Virshup DM . Casein kinase 1: complexity in the family. Int J Biochem Cell Biol 2011; 43: 465–469.

    Article  CAS  Google Scholar 

  44. Swiatek W, Tsai IC, Klimowski L, Pepler A, Barnette J, Yost HJ et al. Regulation of casein kinase I epsilon activity by Wnt signaling. J Biol Chem 2004; 279: 13011–13017.

    Article  CAS  Google Scholar 

  45. Liu F, Virshup DM, Nairn AC, Greengard P . Mechanism of regulation of casein kinase I activity by group I metabotropic glutamate receptors. J Biol Chem 2002; 277: 45393–45399.

    Article  CAS  Google Scholar 

  46. Pullar CE, Chen J, Isseroff RR . PP2A activation by beta2-adrenergic receptor agonists: novel regulatory mechanism of keratinocyte migration. J Biol Chem 2003; 278: 22555–22562.

    Article  CAS  Google Scholar 

  47. Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 2011; 377: 1929–1937.

    Article  CAS  Google Scholar 

  48. Beenken A, Mohammadi M . The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8: 235–253.

    Article  CAS  Google Scholar 

  49. Chow SY, Yu CY, Guy GR . Sprouty2 interacts with protein kinase C delta and disrupts phosphorylation of protein kinase D1. J Biol Chem 2009; 284: 19623–19636.

    Article  CAS  Google Scholar 

  50. Tsai IC, Amack JD, Gao ZH, Band V, Yost HJ, Virshup DM . A Wnt-CKIvarepsilon-Rap1 pathway regulates gastrulation by modulating SIPA1L1, a Rap GTPase activating protein. Dev Cell 2007; 12: 335–347.

    Article  CAS  Google Scholar 

  51. Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM et al. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008; 58: 78–88.

    Article  CAS  Google Scholar 

  52. Wong ES, Lim J, Low BC, Chen Q, Guy GR . Evidence for direct interaction between Sprouty and Cbl. J Biol Chem 2001; 276: 5866–5875.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Permeen Yusoff and Dr Jit Kong Cheong for advice. This research was supported by the National Medical Research Council of Singapore under its STaR Award program to DMV, the A*STAR Graduate Scholarship (to DGRY) and by the Agency for Science, Technology and Research, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Virshup.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, D., Ghosh, S., Guy, G. et al. Casein kinase 1 regulates Sprouty2 in FGF–ERK signaling. Oncogene 34, 474–484 (2015). https://doi.org/10.1038/onc.2013.564

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.564

Keywords

This article is cited by

Search

Quick links