Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LGALS3BP, lectin galactoside-binding soluble 3 binding protein, promotes oncogenic cellular events impeded by antibody intervention

Abstract

The extracellular matrix protein lectin galactoside-binding soluble 3 binding protein (LGALS3BP) constitutes a negative prognostic marker of cancer onset and progression with increasing value in clinical application. Since its discovery, however, although the glycoprotein has been implicated in a growing number of disease-related processes, its actual role and mechanism of action have remained ambiguous, thus hindering opportunities for therapeutic development. In this study, we have determined that LGALS3BP constitutes a novel ligand for integrins α1β1, α5β1, αvβ1 and α6β1 and have identified that these newly established partnerships at the membrane level are responsible for exerting the molecule’s involvement in cancer through manipulation of multiple canonical ‘outside-in’ integrin signalling events. We demonstrate that LGALS3BP-mediated integrin activation results into signal transmission via Akt, JNK and the Ras cascade via the Raf-ERK axis while p38 activity is kept at baseline levels. Transient cellular adherence to LGALS3BP favours survival and proliferation signalling while apoptosis is kept at bay. Sustained cellular exposure to LGALS3BP significantly supports viability, motility and migration. Importantly, an anti-LGALS3BP antibody, SP2 is capable of impeding these newly defined LGALS3BP-driven processes without, however, compromising cell viability. These novel findings reveal the mechanism of action of LGALS3BP during cellular adherence and warrant its further validation as a potential pharmacological target for anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hynes RO . The extracellular matrix: not just pretty fibrils. Science 2009; 326: 1216–1219.

    Article  CAS  Google Scholar 

  2. Lu P, Weaver VM, Werb Z . The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196: 395–406.

    Article  CAS  Google Scholar 

  3. Mbeunkui F, Johann DJ Jr . Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009; 63: 571–582.

    Article  Google Scholar 

  4. Huxley-Jones J, Foord SM, Barnes MR . Drug discovery in the extracellular matrix. Drug Discov Today 2008; 13: 685–694.

    Article  CAS  Google Scholar 

  5. Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R . Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2009; 61: 198–223.

    Article  CAS  Google Scholar 

  6. Martinez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F . The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 2011; 63: 967–1000.

    Article  CAS  Google Scholar 

  7. Iacobelli S, Sismondi P, Giai M, D'Egidio M, Tinari N, Amatetti C et al. Prognostic value of a novel circulating serum 90K antigen in breast cancer. Br J Cancer 1994; 69: 172–176.

    Article  CAS  Google Scholar 

  8. Ozaki Y, Kontani K, Hanaoka J, Chano T, Teramoto K, Tezuka N et al. Expression and immunogenicity of a tumor-associated antigen, 90K/Mac-2 binding protein, in lung carcinoma. Cancer 2002; 95: 1954–1962.

    Article  CAS  Google Scholar 

  9. Sardana G, Marshall J, Diamandis EP . Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin Chem 2007; 53: 429–437.

    Article  CAS  Google Scholar 

  10. Xue H, Lu B, Lai M . The cancer secretome: a reservoir of biomarkers. J Transl Med 2008; 6: 52.

    Article  Google Scholar 

  11. Ulmer TA, Keeler V, Loh L, Chibbar R, Torlakovic E, Andre S et al. Tumor-associated antigen 90K/Mac-2-binding protein: possible role in colon cancer. J Cell Biochem 2006; 98: 1351–1366.

    Article  CAS  Google Scholar 

  12. Scambia G, Panici PB, Baiocchi G, Perrone L, Iacobelli S, Mancuso S . Measurement of a monoclonal-antibody-defined antigen (90K) in the sera of patients with ovarian cancer. Anticancer Res 1988; 8: 761–764.

    CAS  PubMed  Google Scholar 

  13. Cesinaro AM, Natoli C, Grassadonia A, Tinari N, Iacobelli S, Trentini GP . Expression of the 90K tumor-associated protein in benign and malignant melanocytic lesions. J Invest Dermatol 2002; 119: 187–190.

    Article  CAS  Google Scholar 

  14. Carlin CR, Knowles BB . Identification of a 90 000-Dalton cell surface glycoprotein with elevated expression in human hepatoma cells. Exp Cell Res 1983; 147: 359–367.

    Article  CAS  Google Scholar 

  15. Iacovazzi PA, Trisolini A, Barletta D, Elba S, Manghisi OG, Correale M . Serum 90K/MAC-2BP glycoprotein in patients with liver cirrhosis and hepatocellular carcinoma: a comparison with alpha-fetoprotein. Clin Chem Lab Med 2001; 39: 961–965.

    Article  CAS  Google Scholar 

  16. Kashyap MK, Harsha HC, Renuse S, Pawar H, Sahasrabuddhe NA, Kim MS et al. SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer Biol Ther 2010; 10: 796–810.

    Article  CAS  Google Scholar 

  17. Park YP, Choi SC, Kim JH, Song EY, Kim JW, Yoon DY et al. Up-regulation of Mac-2 binding protein by hTERT in gastric cancer. Int J Cancer 2007; 120: 813–820.

    Article  CAS  Google Scholar 

  18. Zhang DS, Jiang WQ, Li S, Zhang XS, Mao H, Chen XQ et al. [Predictive significance of serum 90K/Mac-2BP on chemotherapy response in non-Hodgkin's lymphoma]. Ai Zheng 2003; 22: 870–873.

    PubMed  Google Scholar 

  19. Koopmann J, Thuluvath PJ, Zahurak ML, Kristiansen TZ, Pandey A, Schulick R et al. Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer 2004; 101: 1609–1615.

    Article  CAS  Google Scholar 

  20. Srirajaskanthan R, Caplin ME, Waugh MG, Watkins J, Meyer T, Hsuan JJ et al. Identification of Mac-2-binding protein as a putative marker of neuroendocrine tumors from the analysis of cell line secretomes. Mol Cell Proteomics 2010; 9: 656–666.

    Article  CAS  Google Scholar 

  21. Grassadonia A, Tinari N, Iurisci I, Piccolo E, Cumashi A, Innominato P et al. 90K (Mac-2 BP) and galectins in tumor progression and metastasis. Glycoconj J 2004; 19: 551–556.

    Article  Google Scholar 

  22. Fornarini B, D'Ambrosio C, Natoli C, Tinari N, Silingardi V, Iacobelli S . Adhesion to 90K (Mac-2 BP) as a mechanism for lymphoma drug resistance in vivo. Blood 2000; 96: 3282–3285.

    CAS  PubMed  Google Scholar 

  23. Ullrich A, Sures I, D'Egidio M, Jallal B, Powell TJ, Herbst R et al. The secreted tumor-associated antigen 90K is a potent immune stimulator. J Biol Chem 1994; 269: 18401–18407.

    CAS  PubMed  Google Scholar 

  24. Sasaki T, Brakebusch C, Engel J, Timpl R . Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin. EMBO J 1998; 17: 1606–1613.

    Article  CAS  Google Scholar 

  25. Block AS, Saraswati S, Lichti CF, Mahadevan M, Diekman AB . Co-purification of Mac-2 binding protein with galectin-3 and association with prostasomes in human semen. Prostate 2011; 71: 711–721.

    Article  CAS  Google Scholar 

  26. Barczyk M, Carracedo S, Gullberg D . Integrins. Cell Tissue Res 2010; 339: 269–280.

    Article  CAS  Google Scholar 

  27. Geiger B, Yamada KM . Molecular architecture and function of matrix adhesions. Cold Spring Harb Perspect Biol 2011; 3: a005033.

    Article  Google Scholar 

  28. Han S, Khuri FR, Roman J . Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 2006; 66: 315–323.

    Article  CAS  Google Scholar 

  29. Oktay M, Wary KK, Dans M, Birge RB, Giancotti FG . Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol 1999; 145: 1461–1469.

    Article  CAS  Google Scholar 

  30. Bode AM, Dong Z . The functional contrariety of JNK. Mol Carcinog 2007; 46: 591–598.

    Article  CAS  Google Scholar 

  31. Dreskin SC, Thomas GW, Dale SN, Heasley LE . Isoforms of Jun kinase are differentially expressed and activated in human monocyte/macrophage (THP-1) cells. J Immunol 2001; 166: 5646–5653.

    Article  CAS  Google Scholar 

  32. Ono K, Han J . The p38 signal transduction pathway: activation and function. Cell Signal 2000; 12: 1–13.

    Article  CAS  Google Scholar 

  33. Hood JD, Cheresh DA . Role of integrins in cell invasion and migration. Nat Rev Cancer 2002; 2: 91–100.

    Article  Google Scholar 

  34. Van Slambrouck S, Jenkins AR, Romero AE, Steelant WF . Reorganization of the integrin alpha2 subunit controls cell adhesion and cancer cell invasion in prostate cancer. Int J Oncol 2009; 34: 1717–1726.

    Article  CAS  Google Scholar 

  35. Faccio R, Grano M, Colucci S, Villa A, Giannelli G, Quaranta V et al. Localization and possible role of two different alpha v beta 3 integrin conformations in resting and resorbing osteoclasts. J Cell Sci 2002; 115: 2919–2929.

    CAS  PubMed  Google Scholar 

  36. Snider JL, Allison C, Bellaire BH, Ferrero RL, Cardelli JA . The beta1 integrin activates JNK independent of CagA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells. J Biol Chem 2008; 283: 13952–13963.

    Article  CAS  Google Scholar 

  37. Zhang H, Ozaki I, Mizuta T, Yoshimura T, Matsuhashi S, Eguchi Y et al. Transforming growth factor-beta 1-induced apoptosis is blocked by beta 1-integrin-mediated mitogen-activated protein kinase activation in human hepatoma cells. Cancer Sci 2004; 95: 878–886.

    Article  CAS  Google Scholar 

  38. Awasthi N, Zhang C, Hinz S, Schwarz MA, Schwarz RE . Enhancing sorafenib-mediated sensitization to gemcitabine in experimental pancreatic cancer through EMAP II. J Exp Clin Cancer Res 2013; 32: 12.

    Article  CAS  Google Scholar 

  39. Goodman SL, Picard M . Integrins as therapeutic targets. Trends Pharmacol Sci 2012; 33: 405–412.

    Article  CAS  Google Scholar 

  40. Lu X, Lu D, Scully M, Kakkar V . The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy. Perspect Medicin Chem 2008; 2: 57–73.

    Article  CAS  Google Scholar 

  41. Marchetti A, Tinari N, Buttitta F, Chella A, Angeletti CA, Sacco R et al. Expression of 90K (Mac-2 BP) correlates with distant metastasis and predicts survival in stage I non-small cell lung cancer patients. Cancer Res 2002; 62: 2535–2539.

    CAS  PubMed  Google Scholar 

  42. Ruegg C, Mariotti A . Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell Mol Life Sci 2003; 60: 1135–1157.

    Article  CAS  Google Scholar 

  43. Niland S, Eble JA . Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. J Oncol 2012; 2012: 125278.

    Article  Google Scholar 

  44. Piccolo E, Tinari N, Semeraro D, Traini S, Fichera I, Cumashi A et al. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis. J Mol Med 2013; 91: 83–94.

    Article  CAS  Google Scholar 

  45. Natoli C, Dianzani F, Mazzotta F, Balocchini E, Pierotti P, Antonelli G et al. 90K protein: a new predictor marker of disease progression in human immunodeficiency virus infection. J Acquir Immune Defic Syndr 1993; 6: 370–375.

    CAS  PubMed  Google Scholar 

  46. Pelliccia P, Natoli C, Petitti MT, Verrotti A, Chiarelli F, Iacobelli S . Elevated levels of circulating immunostimulatory 90K in Henoch-Schoenlein purpura. J Clin Immunol 1999; 19: 143–147.

    Article  CAS  Google Scholar 

  47. Ohshima S, Kuchen S, Seemayer CA, Kyburz D, Hirt A, Klinzing S et al. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 2003; 48: 2788–2795.

    Article  CAS  Google Scholar 

  48. Lee YJ, Kang SW, Song JK, Park JJ, Bae YD, Lee EY et al. Serum galectin-3 and galectin-3 binding protein levels in Behcet's disease and their association with disease activity. Clin Exp Rheumatol 2007; 25: S41–S45.

    CAS  PubMed  Google Scholar 

  49. Mould AP . Analyzing integrin-dependent adhesion. in: Juan S Bonifacino et al. eds Current protocols in cell biology/editorial board, 2011, Chapter 9: Unit 9.4.

  50. Mould PA . Solid phase assays for studying ECM protein-protein interactions. Methods Mol Biol 2009; 522: 195–200.

    Article  CAS  Google Scholar 

  51. Eisenach PA, Roghi C, Fogarasi M, Murphy G, English WR . MT1-MMP regulates VEGF-A expression through a complex with VEGFR-2 and Src. J Cell Sci 2010; 123: 4182–4193.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Stampolidis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stampolidis, P., Ullrich, A. & Iacobelli, S. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, promotes oncogenic cellular events impeded by antibody intervention. Oncogene 34, 39–52 (2015). https://doi.org/10.1038/onc.2013.548

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.548

Keywords

This article is cited by

Search

Quick links