Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Stem cell origin of myelodysplastic syndromes

Abstract

Myelodysplastic syndromes (MDS) are common hematologic disorders that are characterized by decreased blood counts due to ineffective hematopoiesis. MDS is considered a ‘preleukemic’ disorder linked to a significantly elevated risk of developing an overt acute leukemia. Cytopenias can be observed in all three myeloid lineages suggesting the involvement of multipotent, immature hematopoietic cells in the pathophysiology of this disease. Recent studies using murine models of MDS as well as primary patient-derived bone marrow samples have provided direct evidence that the most immature, self-renewing hematopoietic stem cells (HSC), as well as lineage-committed progenitor cells, are critically altered in patients with MDS. Besides significant changes in the number and distribution of stem as well as immature progenitor cells, genetic and epigenetic aberrations have been identified, which confer functional changes to these aberrant stem cells, impairing their ability to proliferate and differentiate. Most importantly, aberrant stem cells can persist and further expand after treatment, even upon transient achievement of clinical complete remission, pointing to a critical role of these cells in disease relapse. Ongoing preclinical and clinical studies are particularly focusing on the precise molecular and functional characterization of aberrant MDS stem cells in response to therapy, with the goal to develop stem cell-targeted strategies for therapy and disease monitoring that will allow for achievement of longer-lasting remissions in MDS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bacher U, Haferlach T, Kern W, Haferlach C, Schnittger S . A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica 2007; 92: 744–752.

    CAS  PubMed  Google Scholar 

  2. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. New Engl J Med 2011; 364: 2496–2506.

    Article  CAS  PubMed  Google Scholar 

  3. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer cell 2010; 18: 553–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jordan CT, Guzman ML, Noble M . Cancer stem cells. New Engl J Med 2006; 355: 1253–1261.

    CAS  PubMed  Google Scholar 

  5. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  6. Steidl U, Rosenbauer F, Verhaak RG, Gu X, Ebralidze A, Otu HH et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet 2006; 38: 1269–1277.

    CAS  PubMed  Google Scholar 

  7. Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 2010; 95: 1668–1674.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boultwood J, Perry J, Pellagatti A, Fernandez-Mercado M, Fernandez-Santamaria C, Calasanz MJ et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 2010; 24: 1062–1065.

    CAS  PubMed  Google Scholar 

  9. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011; 25: 1153–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Thol F, Kade S, Schlarmann C, Loffeld P, Morgan M, Krauter J et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 2012; 119: 3578–3584.

    CAS  PubMed  Google Scholar 

  11. Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer cell 2006; 9: 57–68.

    CAS  PubMed  Google Scholar 

  12. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. New Engl J Med 2011; 365: 1384–1395.

    CAS  PubMed  Google Scholar 

  13. Pang WW, Pluvinage JV, Price EA, Sridhar K, Arber DA, Greenberg PL et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci USA 2013; 110: 3011–3016.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tehranchi R, Woll PS, Anderson K, Buza-Vidas N, Mizukami T, Mead AJ et al. Persistent malignant stem cells in del(5q) myelodysplasia in remission. New Engl J Med 2010; 363: 1025–1037.

    CAS  PubMed  Google Scholar 

  15. Will B, Zhou L, Vogler TO, Ben-Neriah S, Schinke C, Tamari R et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood 2012; 120: 2076–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haase D, Feuring-Buske M, Schafer C, Schoch C, Troff C, Gahn B et al. Cytogenetic analysis of CD34+ subpopulations in AML and MDS characterized by the expression of CD38 and CD117. Leukemia 1997; 11: 674–679.

    CAS  PubMed  Google Scholar 

  17. Nilsson L, Astrand-Grundstrom I, Arvidsson I, Jacobsson B, Hellstrom-Lindberg E, Hast R et al. Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 2000; 96: 2012–2021.

    CAS  PubMed  Google Scholar 

  18. Nilsson L, Astrand-Grundstrom I, Anderson K, Arvidsson I, Hokland P, Bryder D et al. Involvement and functional impairment of the CD34(+)CD38(−)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood 2002; 100: 259–267.

    CAS  PubMed  Google Scholar 

  19. Abrahamson G, Boultwood J, Madden J, Kelly S, Oscier DG, Rack K et al. Clonality of cell populations in refractory anaemia using combined approach of gene loss and X-linked restriction fragment length polymorphism-methylation analyses. Brit J Haematol 1991; 79: 550–555.

    CAS  Google Scholar 

  20. Bernell P, Jacobsson B, Nordgren A, Hast R . Clonal cell lineage involvement in myelodysplastic syndromes studied by fluorescence in situ hybridization and morphology. Leukemia 1996; 10: 662–668.

    CAS  PubMed  Google Scholar 

  21. Boultwood J, Wainscoat JS . Clonality in the myelodysplastic syndromes. Int J Hematol 2001; 73: 411–415.

    PubMed  Google Scholar 

  22. Jaju RJ, Jones M, Boultwood J, Kelly S, Mason DY, Wainscoat JS et al. Combined immunophenotyping and FISH identifies the involvement of B-cells in 5q− syndrome. Gene Chromosome Cancer 2000; 29: 276–280.

    CAS  Google Scholar 

  23. Kroef MJ, Bolk MJ, Muus P, Wessels JW, Beverstock GC, Willemze R et al. Mosaicism of the 5q deletion as assessed by interphase FISH is a common phenomenon in MDS and restricted to myeloid cells. Leukemia 1997; 11: 519–523.

    CAS  PubMed  Google Scholar 

  24. Kroef MJ, Fibbe WE, Mout R, Jansen RP, Haak HL, Wessels JW et al. Myeloid but not lymphoid cells carry the 5q deletion: polymerase chain reaction analysis of loss of heterozygosity using mini-repeat sequences on highly purified cell fractions. Blood 1993; 81: 1849–1854.

    CAS  PubMed  Google Scholar 

  25. Miura I, Takahashi N, Kobayashi Y, Saito K, Miura AB . Molecular cytogenetics of stem cells: target cells of chromosome aberrations as revealed by the application of fluorescence in situ hybridization to fluorescence-activated cell sorting. Int J Hematol 2000; 72: 310–317.

    CAS  PubMed  Google Scholar 

  26. Soenen V, Fenaux P, Flactif M, Lepelley P, Lai JL, Cosson A et al. Combined immunophenotyping and in situ hybridization (FICTION): a rapid method to study cell lineage involvement in myelodysplastic syndromes. Brit J Haematol 1995; 90: 701–706.

    CAS  Google Scholar 

  27. van Lom K, Hagemeijer A, Vandekerckhove F, Smit EM, Lowenberg B . Cytogenetic clonality analysis: typical patterns in myelodysplastic syndrome and acute myeloid leukaemia. Brit J Haematol 1996; 93: 594–600.

    CAS  Google Scholar 

  28. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012; 4: 149ra18.

    Google Scholar 

  29. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer cell 2011; 19: 138–152.

    CAS  PubMed  Google Scholar 

  30. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    CAS  PubMed  Google Scholar 

  31. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010; 16: 49–58.

    CAS  PubMed  Google Scholar 

  32. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. New Engl J Med 2009; 360: 2289–2301.

    PubMed  Google Scholar 

  33. Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP . Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 2002; 100: 3553–3560.

    CAS  PubMed  Google Scholar 

  34. Chen G, Zeng W, Miyazato A, Billings E, Maciejewski JP, Kajigaya S et al. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood 2004; 104: 4210–4218.

    CAS  PubMed  Google Scholar 

  35. Prall WC, Czibere A, Grall F, Spentzos D, Steidl U, Giagounidis AA et al. Differential gene expression of bone marrow-derived CD34+ cells is associated with survival of patients suffering from myelodysplastic syndrome. Int J Hematol 2009; 89: 173–187.

    CAS  PubMed  Google Scholar 

  36. Pellagatti A, Cazzola M, Giagounidis AA, Malcovati L, Porta MG, Killick S et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 2006; 108: 337–345.

    CAS  PubMed  Google Scholar 

  37. Pellagatti A, Cazzola M, Giagounidis A, Perry J, Malcovati L, Della Porta MG et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 2010; 24: 756–764.

    CAS  PubMed  Google Scholar 

  38. Yang L, Dybedal I, Bryder D, Nilsson L, Sitnicka E, Sasaki Y et al. IFN-gamma negatively modulates self-renewal of repopulating human hemopoietic stem cells. J Immunol 2005; 174: 752–757.

    CAS  PubMed  Google Scholar 

  39. Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M et al. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 1997; 11: 2049–2054.

    CAS  PubMed  Google Scholar 

  40. Verma A, List AF . Cytokine targets in the treatment of myelodysplastic syndromes. Curr Hematol Rep 2005; 4: 429–435.

    CAS  PubMed  Google Scholar 

  41. Zeng W, Chen G, Kajigaya S, Nunez O, Charrow A, Billings EM et al. Gene expression profiling in CD34 cells to identify differences between aplastic anemia patients and healthy volunteers. Blood 2004; 103: 325–332.

    CAS  PubMed  Google Scholar 

  42. Nilsson L, Eden P, Olsson E, Mansson R, Astrand-Grundstrom I, Strombeck B et al. The molecular signature of MDS stem cells supports a stem-cell origin of 5q myelodysplastic syndromes. Blood 2007; 110: 3005–3014.

    CAS  PubMed  Google Scholar 

  43. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009; 114: 3448–3458.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 2009; 37: 3829–3839.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chung SS, Pang WW, In GK, Jan M, Klimek VM, Melnick A et al. CD99 Identifies Disease Stem Cells in Acute Myeloid Leukemia and the Myelodysplastic Syndromes. Blood 2012; 120: 210 abstr.

    Google Scholar 

  46. Barreyro L, Will B, Bartholdy B, Zhou L, Todorova TI, Stanley RF et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood 2012; 120: 1290–1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Parkin B, Ouillette P, Li Y, Keller J, Lam C, Roulston D et al. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood 2013; 121: 369–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kirstetter P, Schuster MB, Bereshchenko O, Moore S, Dvinge H, Kurz E et al. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer cell 2008; 13: 299–310.

    CAS  PubMed  Google Scholar 

  50. Bereshchenko O, Mancini E, Moore S, Bilbao D, Mansson R, Luc S et al. Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer cell 2009; 16: 390–400.

    CAS  PubMed  Google Scholar 

  51. de Guzman CG, Warren AJ, Zhang Z, Gartland L, Erickson P, Drabkin H et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 2002; 22: 5506–5517.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA et al. Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer cell 2008; 13: 432–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624–630.

    CAS  PubMed  Google Scholar 

  54. Passegue E, Wagner EF, Weissman IL . JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 2004; 119: 431–443.

    CAS  PubMed  Google Scholar 

  55. Santaguida M, Schepers K, King B, Sabnis AJ, Forsberg EC, Attema JL et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer cell 2009; 15: 341–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shimizu R, Kuroha T, Ohneda O, Pan X, Ohneda K, Takahashi S et al. Leukemogenesis caused by incapacitated GATA-1 function. Mol Cell Biol 2004; 24: 10814–10825.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kawahara M, Pandolfi A, Bartholdy B, Barreyro L, Will B, Roth M et al. H2.0-like homeobox regulates early hematopoiesis and promotes acute myeloid leukemia. Cancer cell 2012; 22: 194–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Khandanpour C, Kosan C, Gaudreau MC, Duhrsen U, Hebert J, Zeng H et al. Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease. Stem Cells 2011; 29: 376–385.

    CAS  PubMed  Google Scholar 

  59. Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J et al. Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell stem cell 2011; 8: 649–662.

    CAS  PubMed  Google Scholar 

  60. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109: 39–45.

    CAS  PubMed  Google Scholar 

  61. Ruiz-Herguido C, Guiu J, D'Altri T, Ingles-Esteve J, Dzierzak E, Espinosa L et al. Hematopoietic stem cell development requires transient Wnt/beta-catenin activity. J Exp Med 2012; 209: 1457–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodrigues NP, Tipping AJ, Wang Z, Enver T . GATA-2 mediated regulation of normal hematopoietic stem/progenitor cell function, myelodysplasia and myeloid leukemia. Int J Biochem Cell Biol 2012; 44: 457–460.

    CAS  PubMed  Google Scholar 

  63. Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 2009; 41: 1207–1215.

    PubMed  Google Scholar 

  64. Trowbridge JJ, Snow JW, Kim J, Orkin SH . DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell stem cell 2009; 5: 442–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer cell 2010; 17: 13–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M et al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 2012; 120: 1107–1117.

    CAS  PubMed  Google Scholar 

  67. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2012; 44: 23–31.

    CAS  Google Scholar 

  68. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer cell 2011; 20: 11–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer cell 2012; 22: 180–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Muto T, Sashida G, Oshima M, Wendt GR, Mochizuki-Kashio M, Nagata Y et al. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J Exp Med 2013; 210: 2627–2639.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T, Chung YR et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med 2013; 210: 2641–2659.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468: 701–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    CAS  PubMed  Google Scholar 

  74. Iriuchishima H, Takubo K, Matsuoka S, Onoyama I, Nakayama KI, Nojima Y et al. Ex vivo maintenance of hematopoietic stem cells by quiescence induction through Fbxw7α overexpression. Blood 2011; 117: 2373–2377.

    CAS  PubMed  Google Scholar 

  75. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell stem cell 2010; 7: 391–402.

    CAS  PubMed  Google Scholar 

  77. Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010; 468: 659–663.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Abramovich C, Pineault N, Ohta H, Humphries RK . Hox genes: from leukemia to hematopoietic stem cell expansion. Ann NY Acad Sci 2005; 1044: 109–116.

    CAS  PubMed  Google Scholar 

  79. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell stem cell 2008; 3: 611–624.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    CAS  PubMed  Google Scholar 

  82. Petzer AL, Hogge DE, Landsdorp PM, Reid DS, Eaves CJ . Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci USA 1996; 93: 1470–1474.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Craddock C, Quek L, Goardon N, Freeman S, Siddique S, Raghavan M et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia 2013; 27: 1028–1036.

    CAS  PubMed  Google Scholar 

  84. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451: 335–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 2010; 16: 59–66.

    CAS  PubMed  Google Scholar 

  86. Venner CP, Woltosz JW, Nevill TJ, Deeg HJ, Caceres G, Platzbecker U et al. Correlation of clinical response and response duration with miR-145 induction by lenalidomide in CD34(+) cells from patients with del(5q) myelodysplastic syndrome. Haematologica 2013; 98: 409–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer cell 2013; 24: 90–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 3747–3754.

    CAS  PubMed  Google Scholar 

  89. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. New Engl J Med 2012; 366: 1079–1089.

    CAS  PubMed  Google Scholar 

  90. Bains A, Luthra R, Medeiros LJ, Zuo Z . FLT3 and NPM1 mutations in myelodysplastic syndromes: Frequency and potential value for predicting progression to acute myeloid leukemia. Am J Cllin Pathol 2011; 135: 62–69.

    Google Scholar 

  91. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005; 437: 147–153.

    CAS  PubMed  Google Scholar 

  92. Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood 2008; 111: 3859–3862.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010; 468: 839–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324: 930–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Quivoron C, Couronne L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer cell 2011; 20: 25–38.

    CAS  PubMed  Google Scholar 

  97. Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 2010; 24: 1094–1096.

    CAS  PubMed  Google Scholar 

  98. Pardanani A, Patnaik MM, Lasho TL, Mai M, Knudson RA, Finke C et al. Recurrent IDH mutations in high-risk myelodysplastic syndrome or acute myeloid leukemia with isolated del(5q). Leukemia 2010; 24: 1370–1372.

    CAS  PubMed  Google Scholar 

  99. Patnaik MM, Hanson CA, Hodnefield JM, Lasho TL, Finke CM, Knudson RA et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia 2012; 26: 101–105.

    CAS  PubMed  Google Scholar 

  100. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer cell 2010; 17: 225–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339: 1621–1625.

    CAS  PubMed  Google Scholar 

  102. Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brustle A et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012; 488: 656–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chaturvedi A, Araujo Cruz MM, Jyotsana N, Sharma A, Yun H, Gorlich K et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 2013; 122: 2877–2887.

    CAS  PubMed  Google Scholar 

  104. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340: 626–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013; 340: 622–626.

    CAS  PubMed  Google Scholar 

  106. Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN . Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 1988; 54: 831–840.

    CAS  PubMed  Google Scholar 

  107. Buonamici S, Li D, Chi Y, Zhao R, Wang X, Brace L et al. EVI1 induces myelodysplastic syndrome in mice. J Clin Invest 2004; 114: 713–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Laricchia-Robbio L, Fazzina R, Li D, Rinaldi CR, Sinha KK, Chakraborty S et al. Point mutations in two EVI1 Zn fingers abolish EVI1-GATA1 interaction and allow erythroid differentiation of murine bone marrow cells. Mol Cell Biol 2006; 26: 7658–7666.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Louz D, van den Broek M, Verbakel S, Vankan Y, van Lom K, Joosten M et al. Erythroid defects and increased retrovirally-induced tumor formation in Evi1 transgenic mice. Leukemia 2000; 14: 1876–1884.

    CAS  PubMed  Google Scholar 

  110. Kreider BL, Orkin SH, Ihle JN . Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene. Proc Natl Acad Sci USA 1993; 90: 6454–6458.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Morishita K, Parganas E, Matsugi T, Ihle JN . Expression of the Evi-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor. Mol Cell Biol 1992; 12: 183–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lam DH, Aplan PD . NUP98 gene fusions in hematologic malignancies. Leukemia 2001; 15: 1689–1695.

    CAS  PubMed  Google Scholar 

  113. Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M . GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta. J Biol Chem 2002; 277: 50597–50606.

    CAS  PubMed  Google Scholar 

  114. Taketani T, Taki T, Shibuya N, Ito E, Kitazawa J, Terui K et al. The HOXD11 gene is fused to the NUP98 gene in acute myeloid leukemia with t(2;11)(q31;p15). Cancer Res 2002; 62: 33–37.

    CAS  PubMed  Google Scholar 

  115. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB, Aplan PD . NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 1998; 58: 4269–4273.

    CAS  PubMed  Google Scholar 

  116. Choi CW, Chung YJ, Slape C, Aplan PD . Impaired differentiation and apoptosis of hematopoietic precursors in a mouse model of myelodysplastic syndrome. Haematologica 2008; 93: 1394–1397.

    PubMed  Google Scholar 

  117. Lin YW, Slape C, Zhang Z, Aplan PD . NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 2005; 106: 287–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM et al. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 2006; 108: 2726–2735.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Thanopoulou E, Cashman J, Kakagianne T, Eaves A, Zoumbos N, Eaves C . Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 2004; 103: 4285–4293.

    CAS  PubMed  Google Scholar 

  120. Kerbauy DM, Lesnikov V, Torok-Storb B, Bryant E, Deeg HJ . Engraftment of distinct clonal MDS-derived hematopoietic precursors in NOD/SCID-beta2-microglobulin-deficient mice after intramedullary transplantation of hematopoietic and stromal cells. Blood 2004; 104: 2202–2203.

    CAS  PubMed  Google Scholar 

  121. Graf L, Iwata M, Torok-Storb B . Gene expression profiling of the functionally distinct human bone marrow stromal cell lines HS-5 and HS-27a. Blood 2002; 100: 1509–1511.

    CAS  PubMed  Google Scholar 

  122. Roecklein BA, Torok-Storb B . Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood 1995; 85: 997–1005.

    CAS  PubMed  Google Scholar 

  123. Muguruma Y, Matsushita H, Yahata T, Yumino S, Tanaka Y, Miyachi H et al. Establishment of a xenograft model of human myelodysplastic syndromes. Haematologica 2011; 96: 543–551.

    PubMed  Google Scholar 

  124. Giassi LJ, Pearson T, Shultz LD, Laning J, Biber K, Kraus M et al. Expanded CD34+ human umbilical cord blood cells generate multiple lymphohematopoietic lineages in NOD-scid IL2rgamma(null) mice. Exp Biol Med 2008; 233: 997–1012.

    CAS  Google Scholar 

  125. Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 2003; 102: 873–880.

    CAS  PubMed  Google Scholar 

  126. Ishikawa F, Saito Y, Yoshida S, Harada M, Shultz LD . The differentiative and regenerative properties of human hematopoietic stem/progenitor cells in NOD-SCID/IL2rgamma(null) mice. Curr Top Microbiol Immunol 2008; 324: 87–94.

    CAS  PubMed  Google Scholar 

  127. Will B, Kawahara M, Luciano JP, Bruns I, Parekh S, Erickson-Miller CL et al. Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome. Blood 2009; 114: 3899–3908.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Benito AI, Bryant E, Loken MR, Sale GE, Nash RA, John Gass M et al. NOD/SCID mice transplanted with marrow from patients with myelodysplastic syndrome (MDS) show long-term propagation of normal but not clonal human precursors. Leukemia Res 2003; 27: 425–436.

    CAS  Google Scholar 

  129. Li X, Marcondes AM, Ragoczy T, Telling A, Deeg HJ . Effect of intravenous coadministration of human stroma cell lines on engraftment of long-term repopulating clonal myelodysplastic syndrome cells in immunodeficient mice. Blood Cancer J 2013; 3: e113.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B Will, A Verma or U Steidl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elias, H., Schinke, C., Bhattacharyya, S. et al. Stem cell origin of myelodysplastic syndromes. Oncogene 33, 5139–5150 (2014). https://doi.org/10.1038/onc.2013.520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.520

Keywords

This article is cited by

Search

Quick links