Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein

Abstract

Human protein arginine N-methyltransferase 2 (PRMT2, HRMT1L1) is a protein that belongs to the arginine methyltransferase family, and it has diverse roles in transcriptional regulation through different mechanisms depending on its binding partners. In this study, we provide evidences for the negative effect of PRMT2 on breast cancer cell proliferation in vitro and in vivo. Morever, cyclin D1, one of the key modulators of cell cycle, was found to be downregulated by PRMT2, and PRMT2 was further shown to suppress the estrogen receptor α-binding affinity to the activator protein-1 (AP-1) site in cyclin D1 promoter through indirect binding with AP-1 site, resulting in the inhibition of cyclin D1 promoter activity in MCF-7 cells. Furthermore, a positive correlation between the expression of PRMT2 and cyclin D1 was confirmed in the breast cancer tissues by using tissue microarray assay. In addition, PRMT2 was found to show a high absent percentage in breast caner cell nuclei and the nuclear loss ratio of PRMT2 was demonstrated to positively correlate with cyclin D1 expression and the increasing tumor grade of invasive ductal carcinoma. Those results offer an essential insight into the effect of PRMT2 on breast carcinogenesis, and PRMT2 nuclear loss might be an important biological marker for the diagnosis of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sayeed A, Konduri SD, Liu W, Bansal S, Li F, Das GM . Estrogen receptor alpha inhibits p53-mediated transcriptional repression: implications for the regulation of apoptosis. Cancer Res 2007; 67: 7746–7755.

    Article  CAS  Google Scholar 

  2. Feng Y, Manka D, Wagner KU, Khan SA . Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci USA 2007; 104: 14718–14723.

    Article  CAS  Google Scholar 

  3. Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L . Cracking the estrogen receptor's posttranslational code in breast tumors. Endocr Rev 2011; 32: 597–622.

    Article  CAS  Google Scholar 

  4. Ferguson AT, Davidson NE . Regulation of estrogen receptor alpha function in breast cancer. Crit Rev Oncog 1997; 8: 29–46.

    Article  CAS  Google Scholar 

  5. Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003; 115: 751–763.

    Article  CAS  Google Scholar 

  6. Saville B, Wormke M, Wang F, Nguyen T, Enmark E, Kuiper G et al. Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem 2000; 275: 5379–5387.

    Article  CAS  Google Scholar 

  7. DeNardo DG, Kim HT, Hilsenbeck S, Cuba V, Tsimelzon A, Brown PH . Global gene expression analysis of estrogen receptor transcription factor cross talk in breast cancer: identification of estrogen-induced/activator protein-1-dependent genes. Mol Endocrinol 2005; 19: 362–378.

    Article  CAS  Google Scholar 

  8. Stein B, Yang MX . Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 1995; 15: 4971–4979.

    Article  CAS  Google Scholar 

  9. Cheng AS, Jin VX, Fan M, Smith LT, Liyanarachchi S, Yan PS et al. Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters. Mol Cell 2006; 21: 393–404.

    Article  CAS  Google Scholar 

  10. Bocchinfuso WP, Korach KS . Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 1997; 2: 323–334.

    Article  CAS  Google Scholar 

  11. Eeckhoute J, Carroll JS, Geistlinger TR, Torres-Arzayus MI, Brown M . A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev 2006; 20: 2513–2526.

    Article  CAS  Google Scholar 

  12. Klein EA, Assoian RK . Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 2008; 121: 3853–3857.

    Article  CAS  Google Scholar 

  13. Katsanis N, Yaspo ML, Fisher EM . Identification and mapping of a novel human gene, HRMT1L1, homologous to the rat protein arginine N-methyltransferase 1 (PRMT1) gene. Mamm Genome 1997; 8: 526–529.

    Article  CAS  Google Scholar 

  14. Scott HS, Antonarakis SE, Lalioti MD, Rossier C, Silver PA, Henry MF . Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics 1998; 48: 330–340.

    Article  CAS  Google Scholar 

  15. Qi C, Chang J, Zhu Y, Yeldandi AV, Rao SM, Zhu Y-J . Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J Biol Chem 2002; 277: 28624–28630.

    Article  CAS  Google Scholar 

  16. Meyer R, Wolf SS, Obendorf M . PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J Steroid Biochem Mol Biol 2007; 107: 1–14.

    Article  CAS  Google Scholar 

  17. Herrmann F, Pably P, Eckerich C, Bedford MT, Fackelmayer FO . Human protein arginine methyltransferases in vivo—distinct properties of eight canonical members of the PRMT family. J Cell Sci 2009; 122: 667–677.

    Article  CAS  Google Scholar 

  18. Lakowski TM, Frankel A . Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 2009; 421: 253–261.

    Article  CAS  Google Scholar 

  19. Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS . Beta-catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 2010; 19: 220–231.

    Article  CAS  Google Scholar 

  20. Iwasaki H, Kovacic JC, Olive M, Beers JK, Yoshimoto T, Crook MF et al. Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ Res 2010; 107: 992–1001.

    Article  CAS  Google Scholar 

  21. Yildirim AO, Bulau P, Zakrzewicz D, Kitowska KE, Weissmann N, Grimminger F et al. Increased protein arginine methylation in chronic hypoxia: role of protein arginine methyltransferases. Am J Respir Cell Mol Biol 2006; 35: 436–443.

    Article  CAS  Google Scholar 

  22. Besson V, Brault V, Duchon A, Togbe D, Bizot J-C, Quesniaux VFJ et al. Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Hum Mol Genet 2007; 16: 2040–2052.

    Article  CAS  Google Scholar 

  23. Ganesh L, Yoshimoto T, Moorthy NC, Akahata W, Boehm M, Nabel EG et al. Protein Methyltransferase 2 inhibits NF-{kappa}B function and promotes apoptosis. Mol Cell Biol 2006; 26: 3864–3874.

    Article  CAS  Google Scholar 

  24. Zhong J, Cao RX, Zu XY, Hong T, Yang J, Liu L et al. Identification and characterization of novel spliced variants of PRMT2 in breast carcinoma. FEBS J 2012; 279: 316–335.

    Article  CAS  Google Scholar 

  25. Chung K-H, Hart CC, Al-Bassam S, Avery A, Taylor J, Patel PD et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 2006; 34: e53.

    Article  Google Scholar 

  26. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG . Minireview: CYCLIN D1: normal and abnormal functions. Endocrinology 2004; 145: 5439–5447.

    Article  CAS  Google Scholar 

  27. Ong CS, Zhou J, Ong CN, Shen HM . Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3beta-Cyclin D1 pathway. Cancer Lett 2010; 298: 167–175.

    Article  CAS  Google Scholar 

  28. Takahashi-Yanaga F, Sasaguri T . GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 2008; 20: 581–589.

    Article  CAS  Google Scholar 

  29. Ye X, Guo Y, Zhang Q, Chen W, Hua X, Liu W et al. BetaKlotho suppresses tumor growth in hepatocellular carcinoma by regulating Akt/GSK-3beta/cyclin D1 signaling pathway. PLoS One 2013; 8: e55615.

    Article  CAS  Google Scholar 

  30. Lin W-J, Gary JD, Yang MC, Clarke S, Herschman HR . The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem 1996; 271: 15034–15044.

    Article  CAS  Google Scholar 

  31. McBride AE, Silver PA . State of the arg: protein methylation at arginine comes of age. Cell 2001; 106: 5–8.

    Article  CAS  Google Scholar 

  32. Chen SL, Loffler KA, Chen D, Stallcup MR, Muscat GEO . The coactivator-associated arginine methyltransferase is necessary for muscle differentiation. CARM1 coactivates myocyte enhancer factor-2. J Biol Chem 2002; 277: 4324–4333.

    Article  CAS  Google Scholar 

  33. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M . Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 2007; 445: 214–218.

    Article  CAS  Google Scholar 

  34. Lukong KE, Richard S . Arginine methylation signals mRNA export. Nat Struct Mol Biol 2004; 11: 914–915.

    Article  CAS  Google Scholar 

  35. Meister G, Fischer U . Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J 2002; 21: 5853–5863.

    Article  CAS  Google Scholar 

  36. Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, Aswad DW et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. J Biol Chem 2002; 277: 44623–44630.

    Article  CAS  Google Scholar 

  37. Zhong J, Cao RX, Hong T, Yang J, Zu XY, Xiao XH et al. Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer. Gene 2011; 487: 1–9.

    Article  CAS  Google Scholar 

  38. Goulet I, Gauvin G, Boisvenue S, Cote J . Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem 2007; 282: 33009–33021.

    Article  CAS  Google Scholar 

  39. El Messaoudi S, Fabbrizio E, Rodriguez C, Chuchana P, Fauquier L, Cheng D et al. Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc Natl Acad Sci USA 2006; 103: 13351–13356.

    Article  CAS  Google Scholar 

  40. Thomassen M, Tan Q, Kruse TA . Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat 2009; 113: 239–249.

    Article  Google Scholar 

  41. Yoshimoto T, Boehm M, Olive M, Crook MF, San H, Langenickel T et al. The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Exp Cell Res 2006; 312: 2040–2053.

    Article  CAS  Google Scholar 

  42. Katzenellenbogen BS, Montano MM, Ediger TR, Sun J, Ekena K, Lazennec G et al. Estrogen receptors: selective ligands, partners, and distinctive pharmacology. Recent Prog Horm Res 2000; 55: 163–193 discussion 194-165.

    CAS  PubMed  Google Scholar 

  43. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G . Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7: 812–821.

    Article  CAS  Google Scholar 

  44. Arnold A, Papanikolaou A . Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 2005; 23: 4215–4224.

    Article  CAS  Google Scholar 

  45. Steeg PS, Zhou Q . Cyclins and breast cancer. Breast Cancer Res Treat 1998; 52: 17–28.

    Article  CAS  Google Scholar 

  46. Sabbah M, Courilleau D, Mester J, Redeuilh G . Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc Natl Acad Sci USA 1999; 96: 11217–11222.

    Article  CAS  Google Scholar 

  47. Castro-Rivera E, Samudio I, Safe S . Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem 2001; 276: 30853–30861.

    Article  CAS  Google Scholar 

  48. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 1995; 270: 23589–23597.

    Article  CAS  Google Scholar 

  49. Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT et al. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene 2008; 27: 366–377.

    Article  CAS  Google Scholar 

  50. Marampon F, Casimiro MC, Fu M, Powell MJ, Popov VM, Lindsay J et al. Nerve growth factor regulation of cyclin D1 in PC12 cells through a p21RAS extracellular signal-regulated kinase pathway requires cooperative interactions between Sp1 and nuclear factor-kappaB. Mol Biol Cell 2008; 19: 2566–2578.

    Article  CAS  Google Scholar 

  51. Bartusel T, Schubert S, Klempnauer KH . Regulation of the cyclin D1 and cyclin A1 promoters by B-Myb is mediated by Sp1 binding sites. Gene 2005; 351: 171–180.

    Article  CAS  Google Scholar 

  52. Tashiro E, Tsuchiya A, Imoto M . Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci 2007; 98: 629–635.

    Article  CAS  Google Scholar 

  53. Kim JK, Diehl JA . Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 2009; 220: 292–296.

    Article  CAS  Google Scholar 

  54. Ye Y, Xiao Y, Wang W, Yearsley K, Gao JX, Shetuni B et al. ERalpha signaling through slug regulates E-cadherin and EMT. Oncogene 2010; 29: 1451–1462.

    Article  CAS  Google Scholar 

  55. Kawakubo H, Brachtel E, Hayashida T, Yeo G, Kish J, Muzikansky A et al. Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein. Cancer Res 2006; 66: 7075–7082.

    Article  CAS  Google Scholar 

  56. Zu X, Ma J, Liu H, Liu F, Tan C, Yu L et al. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression. Breast Cancer Res 2011; 13: R26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by projects from the National Natural Science Foundation of P.R.China (Grant No. 31200573, 81272906, 81272355 and 81172542), Hunan Provincial Natural Science Foundation of China (12JJ3116) and The Education Department of Hunan Province Youth Fund (12B108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X-Y Zu or G-B Wen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, J., Cao, RX., Liu, JH. et al. Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein. Oncogene 33, 5546–5558 (2014). https://doi.org/10.1038/onc.2013.500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.500

Keywords

This article is cited by

Search

Quick links