Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells

Abstract

miRNAs act as oncogenes or tumor suppressors in a wide variety of human cancers, including prostate cancer (PCa). We found a severe and consistent downregulation of miRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 region in metastatic cell lines as compared with normal prostatic epithelial cells (PrEC). In specimens of human prostate (28 normals, 99 primary tumors and 13 metastases), lower miRNA levels correlated significantly with a higher incidence of metastatic events and higher prostate specific antigen (PSA) levels, with similar trends observed for lymph node invasion and the Gleason score. We transiently transfected 10 members of the 14q32.31 cluster in normal prostatic epithelial cell lines and characterized their affect on malignant cell behaviors, including proliferation, apoptosis, migration and invasion. Finally, we identified FZD4, a gene important for epithelial-to-mesenchymal transition in (PCa), as a target of miR-377.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

PCa:

Prostate cancer

PrEC:

normal prostatic epithelial cells

PSA:

prostate-specific antigen.

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. International Agency for Research on Cancer, Lyon, France, 2010, Available from: http://globocan.iarc.fr. Accessed May 2011.

    Google Scholar 

  2. Gandellini P, Profumo V, Casamichele A, Fenderico N, Borrelli S, Petrovich G et al. miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death Differ 2012; 19: 1750–1760.

    Article  CAS  Google Scholar 

  3. Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y et al. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene 2012; 32: 4139–4147.

    Article  Google Scholar 

  4. Boll K, Reiche K, Kasack K, Mörbt N, Kretzschmar AK, Tomm JM et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 2013; 32: 277–285.

    Article  CAS  Google Scholar 

  5. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Møller S, Trapman J et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2012; 31: 978–991.

    Article  CAS  Google Scholar 

  6. Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Saccà M, Memeo L et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 2011; 30: 4231–4242.

    Article  CAS  Google Scholar 

  7. Takayama K, Tsutsumi S, Katayama S, Okayama T, Horie-Inoue K, Ikeda K et al. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 2011; 30: 619–630.

    Article  CAS  Google Scholar 

  8. Hassan O, Ahmad A, Sethi S, Sarkar FH . Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol 2012; 5: 9.

    Article  CAS  Google Scholar 

  9. Nair VS, Maeda LS, Ioannidis JP . Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst 2012; 104: 528–540.

    Article  CAS  Google Scholar 

  10. Antonov AV, Knight RA, Melino G, Barlev NA, Tsvetkov PO . MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets. Cell Death Differ 2013; 20: 367.

    Article  CAS  Google Scholar 

  11. Viticchiè G, Lena AM, Cianfarani F, Odorisio T, Annicchiarico-Petruzzelli M, Melino G et al. MicroRNA-203 contributes to skin re-epithelialization. Cell Death Dis 2012; 3: e435.

    Article  Google Scholar 

  12. Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH et al. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci USA 2012; 109: 15312–15317.

    Article  CAS  Google Scholar 

  13. Aberdam D, Candi E, Knight RA, Melino G . miRNAs, 'stemness' and skin. Trends Biochem Sci 2008; 33: 583–591.

    Article  CAS  Google Scholar 

  14. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G et al. miR-203 represses 'stemness' by repressing DeltaNp63. Cell Death Differ 2008; 15: 1187–1195.

    Article  CAS  Google Scholar 

  15. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaillé J . A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 2004; 14: 1741–1748.

    Article  CAS  Google Scholar 

  16. Olive V, Jiang I, He L . mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 2010; 42: 1348–1354.

    Article  CAS  Google Scholar 

  17. Aqeilan RI, Calin GA, Croce CM . miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010; 17: 215–220.

    Article  CAS  Google Scholar 

  18. da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC . Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 2008; 24: 306–316.

    Article  Google Scholar 

  19. Zehavi L, Avraham R, Barzilai A, Bar-Ilan D, Navon R, Sidi Y et al. Silencing of a large micro-RNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 2012; 11: 44.

    Article  CAS  Google Scholar 

  20. Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST et al. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One 2011; 6: e25114.

    Article  CAS  Google Scholar 

  21. Thayanithy V, Sarver AL, Kartha RV, Li L, Angstadt AY, Breen M et al. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Bone 2012; 50: 171–181.

    Article  CAS  Google Scholar 

  22. Gattolliat CH, Thomas L, Ciafrè SA, Meurice G, Le Teuff G, Job B et al. Expression of miR-487b and miR-410 encoded by 14q32.31 locus is a prognostic marker in neuroblastoma. Br J Cancer 2011; 105: 1352–1361.

    Article  CAS  Google Scholar 

  23. Haller F, von Heydebreck A, Zhang JD, Gunawan B, Langer C, Ramadori G et al. Localization- and mutation-dependent microRNA (miRNA) expressionsignatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol 2010; 220: 71–86.

    Article  CAS  Google Scholar 

  24. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N et al. Genomic and epigenetic alterations deregulate microRNAexpression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 2008; 105: 7004–7009.

    Article  CAS  Google Scholar 

  25. Devor EJ, DE Mik JN, Ramachandran S, Goodheart MJ, Leslie KK . Global dysregulation of the chromosome 14q32 imprinted region in uterine carcinosarcoma. Exp Ther Med 2012; 3: 677–682.

    Article  CAS  Google Scholar 

  26. Lavon I, Zrihan D, Granit A, Einstein O, Fainstein N, Cohen MA et al. Gliomas display a microRNA expression profile reminiscent of neural precursor cells. NeuroOncol 2010; 12: 422–433.

    CAS  Google Scholar 

  27. Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H et al. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ 2011; 18: 1702–1710.

    Article  CAS  Google Scholar 

  28. Afanasyeva EA, Mestdagh P, Kumps C, Vandesompele J, Ehemann V, Theissen J et al. MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ 2011; 18: 974–984.

    Article  CAS  Google Scholar 

  29. Puisségur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 2011; 18: 465–478.

    Article  Google Scholar 

  30. Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S . MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastomamultiforme. Cell Death Dis 2012; 3: e398.

    Article  CAS  Google Scholar 

  31. Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK . MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 2012; 32: 2984–2991.

    Article  Google Scholar 

  32. Couts KL, Anderson EM, Gross MM, Sullivan K, Ahn NG . Oncogenic B-Rafsignaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene 2013; 32: 1959–1970.

    Article  CAS  Google Scholar 

  33. Streicher KL, Zhu W, Lehmann KP, Georgantas RW, Morehouse CA, Brohawn P et al. A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene 2012; 31: 1558–1570.

    Article  CAS  Google Scholar 

  34. Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A et al. DNA methylation silences miR-132 in prostate cancer. Oncogene 2012; 32: 127–134.

    Article  Google Scholar 

  35. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  Google Scholar 

  36. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006.

    Article  CAS  Google Scholar 

  37. Cerami Ethan, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401.

    Article  Google Scholar 

  38. MicroRNA: biogenesis, function and role in cancer Macfarlane LA, Murphy PR . Curr Genomics 2010; 11: 537–561.

  39. Barlev NA, Sayan BS, Candi E, Okorokov AL . The microRNA and p53 families join forces against cancer. Cell Death Differ 2010; 17: 373–375.

    Article  CAS  Google Scholar 

  40. Bartkowiak D, Högner S, Baust H, Nothdurft W, Röttinger EM . Comparative analysis of apoptosis in HL60 detected by annexin-V and fluorescein-diacetate. Cytometry 1999; 37: 191–196.

    Article  CAS  Google Scholar 

  41. Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    Article  Google Scholar 

  42. Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P et al. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2010; 70: 6735–6745.

    Article  CAS  Google Scholar 

  43. Kuriyama M, Obata K, Miyagawa Y, Nishikawa E, Koide T, Takeda A et al. Serum prostate-specific antigen values for the prediction of clinical stage and prognosis in patients with prostate cancer: an analysis of 749 cases. Int J Urol 1996; 3: 462–467.

    Article  CAS  Google Scholar 

  44. Amelio I, Lena AM, Viticchiè G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D et al. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J Cell Biol 2012; 199: 347–363.

    Article  CAS  Google Scholar 

  45. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol 2012; 32: 633–651.

    Article  CAS  Google Scholar 

  46. Yu J, Peng H, Ruan Q, Fatima A, Getsios S, Lavker RM . MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J 2010; 24: 3950–3959.

    Article  CAS  Google Scholar 

  47. Agueli C, Cammarata G, Salemi D, Dagnino L, Nicoletti R, La Rosa M et al. 14q32/miRNA clusters loss of heterozygosity in acute lymphoblastic leukemia is associated with up-regulation of BCL11a. Am J Hematol 2010; 85: 575–578.

    Article  CAS  Google Scholar 

  48. Ueno K, Hirata H, Majid S, Yamamura S, Shahryari V, Tabatabai ZL et al. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregulatingRhoC and FZD4. Mol Cancer Ther 2012; 11: 244–253.

    Article  CAS  Google Scholar 

  49. Peltier HJ, Latham GJ . Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008; 14: 844–852.

    Article  CAS  Google Scholar 

  50. Rivetti di Val Cervo P, Lena AM, Nicoloso M, Rossi S, Mancini M, Zhou H et al. p63-microRNA feedback in keratinocyte senescence. Proc Natl Acad Sci USA 2012; 109: 1133–1138.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been mainly supported by AIRC grant (2013IG 13387) to EC and partially supported by AIRC (2011-IG11955) and Ministry of Education and Science of the Russian Federation (11.G34.31.0069) to GM. Research described in this article was also supported in part by Min. Salute (ric. Oncologica26/07), ‘IstitutoDermopaticodell'Immacolata’ (RF06 c.73, RF07 c.57, RF08 c.15, RF07 c.57) to GM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Candi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Formosa, A., Markert, E., Lena, A. et al. MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 33, 5173–5182 (2014). https://doi.org/10.1038/onc.2013.451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.451

Keywords

This article is cited by

Search

Quick links