Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

YB-1 disrupts mismatch repair complex formation, interferes with MutSα recruitment on mismatch and inhibits mismatch repair through interacting with PCNA

Abstract

Y-box binding protein-1 (YB-1) is highly expressed in tumors and it participates in various cellular processes. Previous studies indicated that YB-1 binds to mispaired DNA and interacts with several mismatch repair (MMR)-related factors. However, its role in the MMR system remains undefined. Here, we found that YB-1 represses mutS homolog 6 (MSH6)-containing MMR complex formation and reduces MutSα mismatch binding activity by disrupting interactions among MMR-related factors. In an effort to elucidate how YB-1 exerts this inhibitory effect, we have identified two functional proliferating cell nuclear antigen (PCNA)-interacting protein (PIP)-boxes that mediate YB-1/PCNA interaction and locate within the C-terminal region of YB-1. This interaction is critical for the regulatory role of YB-1 in repressing MutSα mismatch binding activity, disrupting MutSα/PCNA/G/T heteroduplex ternary complex formation and inhibiting in vitro MMR activity. The differential regulation of 3′ and 5′ nick-directed MMR activity by YB-1 was also observed. Moreover, YB-1 overexpression is associated with the alteration of microsatellite pattern and the enhancement of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced and spontaneous mutations. Furthermore, upregulation of other PIP-box-containing proteins, such as myeloid cell leukemia-1 (Mcl-1) and inhibitor of growth protein 1b (ING1b), has no impact on MMR complex formation and mutation accumulation, thus revealing the significant effect of YB-1 on regulating the MMR system. In conclusion, our study suggests that YB-1 functions as a PCNA-interacting factor to exert its regulatory role on the MMR process and involves in the induction of genome instability, which may partially account for the oncogenic potential of YB-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Lu ZH, Books JT, Ley TJ . YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence. Mol Cell Biol 2005; 25: 4625–4637.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Evdokimova V, Ovchinnikov LP, Sorensen PH . Y-box binding protein 1: providing a new angle on translational regulation. Cell Cycle 2006; 5: 1143–1147.

    CAS  PubMed  Google Scholar 

  3. Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 2009; 15: 402–415.

    CAS  PubMed  Google Scholar 

  4. Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN . Y-box-binding protein 1 (YB-1) and its functions. Biochemistry (Mosc) 2011; 76: 1402–1433.

    CAS  Google Scholar 

  5. Matsumoto K, Bay BH . Significance of the Y-box proteins in human cancers. J Mol Genet Med 2005; 1: 11–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Oda Y, Ohishi Y, Saito T, Hinoshita E, Uchiumi T, Kinukawa N et al. Nuclear expression of Y-box-binding protein-1 correlates with P-glycoprotein and topoisomerase II alpha expression, and with poor prognosis in synovial sarcoma. J Pathol 2003; 199: 251–258.

    CAS  PubMed  Google Scholar 

  7. Koike K, Uchiumi T, Ohga T, Toh S, Wada M, Kohno K et al. Nuclear translocation of the Y-box binding protein by ultraviolet irradiation. FEBS Lett 1997; 417: 390–394.

    CAS  PubMed  Google Scholar 

  8. Bargou RC, Jurchott K, Wagener C, Bergmann S, Metzner S, Bommert K et al. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med 1997; 3: 447–450.

    CAS  PubMed  Google Scholar 

  9. Ise T, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M et al. Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res 1999; 59: 342–346.

    CAS  PubMed  Google Scholar 

  10. Gaudreault I, Guay D, Lebel M . YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res 2004; 32: 316–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. de Souza-Pinto NC, Mason PA, Hashiguchi K, Weissman L, Tian J, Guay D et al. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair (Amst) 2009; 8: 704–719.

    CAS  Google Scholar 

  12. Kunkel TA, Erie DA . DNA mismatch repair. Annu Rev Biochem 2005; 74: 681–710.

    CAS  PubMed  Google Scholar 

  13. Iyer RR, Pluciennik A, Burdett V, Modrich PL . DNA mismatch repair: functions and mechanisms. Chem Rev 2006; 106: 302–323.

    CAS  PubMed  Google Scholar 

  14. Jiricny J . The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006; 7: 335–346.

    Article  CAS  PubMed  Google Scholar 

  15. Li GM . Mechanisms and functions of DNA mismatch repair. Cell Res 2008; 18: 85–98.

    CAS  PubMed  Google Scholar 

  16. Soreide K . Molecular testing for microsatellite instability and DNA mismatch repair defects in hereditary and sporadic colorectal cancers—ready for prime time? Tumour Biol 2007; 28: 290–300.

    PubMed  Google Scholar 

  17. Imai K, Yamamoto H . Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 2008; 29: 673–680.

    CAS  PubMed  Google Scholar 

  18. Dzantiev L, Constantin N, Genschel J, Iyer RR, Burgers PM, Modrich P . A defined human system that supports bidirectional mismatch-provoked excision. Mol Cell 2004; 15: 31–41.

    CAS  PubMed  Google Scholar 

  19. Constantin N, Dzantiev L, Kadyrov FA, Modrich P . Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 2005; 280: 39752–39761.

    CAS  PubMed  Google Scholar 

  20. Zhang Y, Yuan F, Presnell SR, Tian K, Gao Y, Tomkinson AE et al. Reconstitution of 5'-directed human mismatch repair in a purified system. Cell 2005; 122: 693–705.

    CAS  PubMed  Google Scholar 

  21. Modrich P . Mechanisms in eukaryotic mismatch repair. J Biol Chem 2006; 281: 30305–30309.

    CAS  PubMed  Google Scholar 

  22. Johnson RE, Kovvali GK, Guzder SN, Amin NS, Holm C, Habraken Y et al. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem 1996; 271: 27987–27990.

    CAS  PubMed  Google Scholar 

  23. Umar A, Buermeyer AB, Simon JA, Thomas DC, Clark AB, Liskay RM et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 1996; 87: 65–73.

    CAS  PubMed  Google Scholar 

  24. Chen C, Merrill BJ, Lau PJ, Holm C, Kolodner RD . Saccharomyces cerevisiae pol30 (proliferating cell nuclear antigen) mutations impair replication fidelity and mismatch repair. Mol Cell Biol 1999; 19: 7801–7815.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gu L, Hong Y, McCulloch S, Watanabe H, Li GM . ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res 1998; 26: 1173–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Flores-Rozas H, Clark D, Kolodner RD . Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet 2000; 26: 375–378.

    CAS  PubMed  Google Scholar 

  27. Lau PJ, Kolodner RD . Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J Biol Chem 2003; 278: 14–17.

    CAS  PubMed  Google Scholar 

  28. Guo S, Presnell SR, Yuan F, Zhang Y, Gu L, Li GM . Differential requirement for proliferating cell nuclear antigen in 5′ and 3′ nick-directed excision in human mismatch repair. J Biol Chem 2004; 279: 16912–16917.

    CAS  PubMed  Google Scholar 

  29. Kadyrov FA, Dzantiev L, Constantin N, Modrich P . Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006; 126: 297–308.

    CAS  PubMed  Google Scholar 

  30. Masih PJ, Kunnev D, Melendy T . Mismatch repair proteins are recruited to replicating DNA through interaction with proliferating cell nuclear antigen (PCNA). Nucleic Acids Res 2008; 36: 67–75.

    CAS  PubMed  Google Scholar 

  31. Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P . PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl Acad Sci USA 2010; 107: 16066–16071.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Iyer RR, Pluciennik A, Genschel J, Tsai MS, Beese LS, Modrich P . MutLalpha and proliferating cell nuclear antigen share binding sites on MutSbeta. J Biol Chem 2010; 285: 11730–11739.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Montecucco A, Rossi R, Levin DS, Gary R, Park MS, Motycka TA et al. DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories. EMBO J 1998; 17: 3786–3795.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA . Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. J Biol Chem 2000; 275: 36498–36501.

    CAS  PubMed  Google Scholar 

  35. Lee SD, Alani E . Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA. J Mol Biol 2006; 355: 175–184.

    CAS  PubMed  Google Scholar 

  36. Moldovan GL, Pfander B, Jentsch S . PCNA, the maestro of the replication fork. Cell 2007; 129: 665–679.

    CAS  PubMed  Google Scholar 

  37. Liberti SE, Andersen SD, Wang J, May A, Miron S, Perderiset M et al. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks. DNA Repair (Amst) 2011; 10: 73–86.

    CAS  Google Scholar 

  38. Shell SS, Putnam CD, Kolodner RD . The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA. Mol Cell 2007; 26: 565–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Valentini AM, Armentano R, Pirrelli M, Caruso ML . Chemotherapeutic agents for colorectal cancer with a defective mismatch repair system: the state of the art. Cancer Treat Rev 2006; 32: 607–618.

    CAS  PubMed  Google Scholar 

  40. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 2008; 14: 2900–2908.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Casorelli I, Russo MT, Bignami M . Role of mismatch repair and MGMT in response to anticancer therapies. Anticancer Agents Med Chem 2008; 8: 368–380.

    CAS  PubMed  Google Scholar 

  42. Fu D, Calvo JA, Samson LD . Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 2012; 12: 104–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bignami M, O'Driscoll M, Aquilina G, Karran P . Unmasking a killer: DNA O(6)-methylguanine and the cytotoxicity of methylating agents. Mutat Res 2000; 462: 71–82.

    CAS  PubMed  Google Scholar 

  44. Kunz C, Saito Y, Schar P . DNA repair in mammalian cells: mismatched repair: variations on a theme. Cell Mol Life Sci 2009; 66: 1021–1038.

    CAS  PubMed  Google Scholar 

  45. Kaina B, Christmann M, Naumann S, Roos WP . MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 2007; 6: 1079–1099.

    CAS  Google Scholar 

  46. Duckett DR, Drummond JT, Murchie AI, Reardon JT, Sancar A, Lilley DM et al. Human MutSalpha recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc Natl Acad Sci USA 1996; 93: 6443–6447.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Stojic L, Brun R, Jiricny J . Mismatch repair and DNA damage signalling. DNA Repair (Amst) 2004; 3: 1091–1101.

    CAS  Google Scholar 

  48. O'Brien V, Brown R . Signalling cell cycle arrest and cell death through the MMR System. Carcinogenesis 2006; 27: 682–692.

    CAS  PubMed  Google Scholar 

  49. Branch P, Aquilina G, Bignami M, Karran P . Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage. Nature 1993; 362: 652–654.

    CAS  PubMed  Google Scholar 

  50. Kat A, Thilly WG, Fang WH, Longley MJ, Li GM, Modrich P . An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci USA 1993; 90: 6424–6428.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. de Wind N, Dekker M, Berns A, Radman M, te Riele H . Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995; 82: 321–330.

    CAS  PubMed  Google Scholar 

  52. Karran P . Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 2001; 22: 1931–1937.

    CAS  PubMed  Google Scholar 

  53. Tomita-Mitchell A, Kat AG, Marcelino LA, Li-Sucholeiki XC, Goodluck-Griffith J, Thilly WG . Mismatch repair deficient human cells: spontaneous and MNNG-induced mutational spectra in the HPRT gene. Mutat Res 2000; 450: 125–138.

    CAS  PubMed  Google Scholar 

  54. Umar A, Koi M, Risinger JI, Glaab WE, Tindall KR, Kolodner RD et al. Correction of hypermutability, N-methyl-N′-nitro-N-nitrosoguanidine resistance, and defective DNA mismatch repair by introducing chromosome 2 into human tumor cells with mutations in MSH2 and MSH6. Cancer Res 1997; 57: 3949–3955.

    CAS  PubMed  Google Scholar 

  55. Fujise K, Zhang D, Liu J, Yeh ET . Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen. J Biol Chem 2000; 275: 39458–39465.

    CAS  PubMed  Google Scholar 

  56. Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP et al. UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J Cell Sci 2001; 114: 3455–3462.

    CAS  PubMed  Google Scholar 

  57. Warbrick E, Lane DP, Glover DM, Cox LS . A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr Biol 1995; 5: 275–282.

    CAS  PubMed  Google Scholar 

  58. Jascur T, Fotedar R, Greene S, Hotchkiss E, Boland CR . N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) triggers MSH2 and Cdt2 protein-dependent degradation of the cell cycle and mismatch repair (MMR) inhibitor protein p21Waf1/Cip1. J Biol Chem 2011; 286: 29531–29539.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lingrel JB, Croyle ML, Woo AL, Arguello JM . Ligand binding sites of Na,K-ATPase. Acta Physiol Scand Suppl 1998; 643: 69–77.

    CAS  PubMed  Google Scholar 

  60. Blanco G, Mercer RW . Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 1998; 275: F633–F650.

    CAS  PubMed  Google Scholar 

  61. Jorgensen PL, Pedersen PA . Structure-function relationships of Na(+), K(+), ATP, or Mg(2+) binding and energy transduction in Na,K-ATPase. Biochim Biophys Acta 2001; 1505: 57–74.

    CAS  PubMed  Google Scholar 

  62. Hidaka M, Takagi Y, Takano TY, Sekiguchi M . PCNA-MutSalpha-mediated binding of MutLalpha to replicative DNA with mismatched bases to induce apoptosis in human cells. Nucleic Acids Res 2005; 33: 5703–5712.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Genschel J, Bazemore LR, Modrich P . Human exonuclease I is required for 5′ and 3′ mismatch repair. J Biol Chem 2002; 277: 13302–13311.

    CAS  PubMed  Google Scholar 

  64. Faury D, Nantel A, Dunn SE, Guiot MC, Haque T, Hauser P et al. Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 2007; 25: 1196–1208.

    CAS  PubMed  Google Scholar 

  65. Gao Y, Fotovati A, Lee C, Wang M, Cote G, Guns E et al. Inhibition of Y-box binding protein-1 slows the growth of glioblastoma multiforme and sensitizes to temozolomide independent O6-methylguanine-DNA methyltransferase. Mol Cancer Ther 2009; 8: 3276–3284.

    CAS  PubMed  Google Scholar 

  66. Xie W, Yang J, Cao Y, Peng C, Ning H, Zhang F et al. Expression of Y-Box-binding protein 1 in Chinese patients with breast cancer. Tumour Biol 2012; 33: 63–71.

    CAS  PubMed  Google Scholar 

  67. Woolley AG, Algie M, Samuel W, Harfoot R, Wiles A, Hung NA et al. Prognostic association of YB-1 expression in breast cancers: a matter of antibody. PLoS One 2011; 6: e20603.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinez R, Schackert HK, Plaschke J, Baretton G, Appelt H, Schackert G . Molecular mechanisms associated with chromosomal and microsatellite instability in sporadic glioblastoma multiforme. Oncology 2004; 66: 395–403.

    PubMed  Google Scholar 

  69. Pizzi C, Di Maio M, Daniele S, Mastranzo P, Spagnoletti I, Limite G et al. Triplet repeat instability correlates with dinucleotide instability in primary breast cancer. Oncol Rep 2007; 17: 193–199.

    CAS  PubMed  Google Scholar 

  70. Perez-Garcia A, Carrion-Navarro J, Bosch-Fortea M, Lazaro-Ibanez E, Prat-Acin R, Ayuso-Sacido A . Genomic instability of surgical sample and cancer-initiating cell lines from human glioblastoma. Front Biosci 2012; 17: 1469–1479.

    CAS  Google Scholar 

  71. Chou CH, Lee RS, Yang-Yen HF . An internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway. Mol Biol Cell 2006; 17: 3952–3963.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang DY, Chang ZF . Interaction of human thymidine kinase 1 with p21(Waf1). Biochem J 2001; 356: 829–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shih CM, Lo SJ, Miyamura T, Chen SY, Lee YH . Suppression of hepatitis B virus expression and replication by hepatitis C virus core protein in HuH-7 cells. J Virol 1993; 67: 5823–5832.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiricny J, Hughes M, Corman N, Rudkin BB . A human 200-kDa protein binds selectively to DNA fragments containing G.T mismatches. Proc Natl Acad Sci USA 1988; 85: 8860–8864.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Iaccarino I, Marra G, Palombo F, Jiricny J . hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha. EMBO J 1998; 17: 2677–2686.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH et al. Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 1999; 73: 2841–2853.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Christmann M, Kaina B . Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents. J Biol Chem 2000; 275: 36256–36262.

    CAS  PubMed  Google Scholar 

  78. Marsischky GT, Kolodner RD . Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. J Biol Chem 1999; 274: 26668–26682.

    CAS  PubMed  Google Scholar 

  79. Mai RT, Yeh TS, Kao CF, Sun SK, Huang HH, Wu Lee YH . Hepatitis C virus core protein recruits nucleolar phosphoprotein B23 and coactivator p300 to relieve the repression effect of transcriptional factor YY1 on B23 gene expression. Oncogene 2006; 25: 448–462.

    CAS  PubMed  Google Scholar 

  80. Huang YM, Chen SU, Goodman SD, Wu SH, Kao JT, Lee CN et al. Interaction of nick-directed DNA mismatch repair and loop repair in human cells. J Biol Chem 2004; 279: 30228–30235.

    CAS  PubMed  Google Scholar 

  81. Holmes J Jr., Clark S, Modrich P . Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci USA 1990; 87: 5837–5841.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J . Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 1997; 57: 4749–4756.

    CAS  PubMed  Google Scholar 

  83. Drobinskaya I, Gabbert HE, Moeslein G, Mueller W . A new method for optimizing multiplex DNA microsatellite analysis in low quality archival specimens. Anticancer Res 2005; 25: 3251–3258.

    CAS  PubMed  Google Scholar 

  84. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006; 108: 319–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Stoklosa T, Poplawski T, Koptyra M, Nieborowska-Skorska M, Basak G, Slupianek A et al. BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res 2008; 68: 2576–2580.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the following grants to Dr Yan-Hwa Wu Lee: the National Health Research Institute (NHRI-EX100-10014BI, NHRI-EX101-10014BI and NHRI-EX102-10014BI), the National Science Council (NSC-94-2320-B-010-005, NSC-95-2320-B-010-049-MY3, NSC-97-2320-B-010-014-MY3, NSC-97-2320-B-009-003-MY3, NSC-100-2320-B-009-007-MY3, NSC-101-2811-B-009-006 and NSC-102-2811-B-009-007) and the ‘Aim for the Top University Program’ of the National Yang-Ming University, the National Chiao-Tung University and the Ministry of Education, Taiwan, Republic of China. We thank Dr Tsung-Sheng Su and Dr Tzu-Hao Cheng for helpful discussions and suggestions, Dr Josef Jiricny, Dr Hsin-Fang Yang-Yen and Dr Zee-Fen Chang for kindly providing plasmids used in this study, Dr Shr-Jeng Leu for sharing experiences on baculovirus expression system and Dr Li-Li Li for critical reading and comments on this manuscript. We acknowledge the High-throughput Genome Analysis Core Facility of National Core Facility Program for Biotechnology, Taiwan (NSC 101-2319-B-010-001), for capillary electrophoresis and DNA sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-H Wu Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YW., Mai, RT., Fang, WH. et al. YB-1 disrupts mismatch repair complex formation, interferes with MutSα recruitment on mismatch and inhibits mismatch repair through interacting with PCNA. Oncogene 33, 5065–5077 (2014). https://doi.org/10.1038/onc.2013.450

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.450

Keywords

This article is cited by

Search

Quick links