Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex

Abstract

Oncogene MYC is highly expressed in many human cancers and functions as a global regulator of ribosome biogenesis. Previously, we reported that ribosomal protein (RP) L11 binds to c-Myc and inhibits its transcriptional activity in response to ribosomal stress. Here, we show that RPL5, co-operatively with RPL11, guides the RNA-induced silencing complex (RISC) to c-Myc mRNA and mediates the degradation of the mRNA, consequently leading to inhibition of c-Myc activity. Knocking down of RPL5 induced c-Myc expression at both mRNA and protein levels, whereas overexpression of RPL5 suppressed c-Myc expression and activity. Immunoprecipitation revealed that RPL5 binds to 3′UTR of c-Myc mRNA and two subunits of RISC, TRBP (HIV-1 TAR RNA-binding protein) and Ago2, mediating the targeting of c-Myc mRNA by miRNAs. Interestingly, RPL5 and RPL11 co-resided on c-Myc mRNA and suppressed c-Myc expression co-operatively. These findings uncover a mechanism by which these two RPs can co-operatively suppress c-Myc expression, allowing a tightly controlled ribosome biogenesis in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dang C, Le A, Gao P . MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15: 6479–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151: 68–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A . Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol Cell Biol 1991; 11: 1176–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soucek L, Whitfield J, Martins C, Finch A, Murphy D, Sodir N et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455: 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sodir N, Swigart L, Karnezis A, Hanahan D, Evan G, Soucek L . Endogenous Myc maintains the tumor microenvironment. Genes Dev 2011; 25: 907–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G . Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 1999; 3: 565–577.

    Article  CAS  PubMed  Google Scholar 

  7. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 2002; 297: 102–104.

    Article  CAS  PubMed  Google Scholar 

  8. Flores I, Murphy D, Swigart L, Knies U, Evan G . Defining the temporal requirements for Myc in the progression and maintenance of skin neoplasia. Oncogene 2004; 23: 5923–5930.

    Article  CAS  PubMed  Google Scholar 

  9. Felsher D, Bishop J . Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 1999; 4: 199–207.

    Article  CAS  PubMed  Google Scholar 

  10. Kim J, Chu J, Shen X, Wang J, Orkin S . An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008; 132: 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  11. Wright J, Brown S, Cole M . Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol 2010; 30: 1411–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pomerantz M, Ahmadiyeh N, Jia L, Herman P, Verzi M, Doddapaneni H et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009; 41: 882–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyer N, Penn L . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  PubMed  Google Scholar 

  14. Eilers M, Eisenman R . Myc's broad reach. Genes Dev 2008; 22: 2755–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nesbit C, Tersak J, Prochownik E . MYC oncogenes and human neoplastic disease. Oncogene 1999; 18: 3004–3016.

    Article  CAS  PubMed  Google Scholar 

  16. Beroukhim R, Mermel C, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. van Riggelen J, Yetil A, Felsher D . MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010; 10: 301–309.

    Article  CAS  PubMed  Google Scholar 

  18. Gallant P . Myc, cell competition, and compensatory proliferation. Cancer Res 2005; 65: 6485–6487.

    Article  CAS  PubMed  Google Scholar 

  19. Dang C . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dai M-S, Lu H . Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 2008; 105: 670–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gourse RL, Thurlow DL, Gerbi SA, Zimmermann RA . Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation. Proc Natl Acad Sci USA 1981; 78: 2722–2726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai MS, Arnold H, Sun XX, Sears R, Lu H . Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 2007; 26: 3332–3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Challagundla KB, Sun XX, Zhang X, DeVine T, Zhang Q, Sears RC et al. Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Mol Cell Biol 2011; 31: 4007–4021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH . Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3: 577–587.

    Article  CAS  PubMed  Google Scholar 

  25. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011; 17: 944–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhat KP, Itahana K, Jin A, Zhang Y . Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J 2004; 23: 2402–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003; 23: 8902–8912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai MS, Lu H . Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 279: 44475–44482.

    Article  CAS  PubMed  Google Scholar 

  29. Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H . Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 2004; 24: 7654–7668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin A, Itahana K, O'Keefe K, Zhang Y . Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 2004; 24: 7669–7680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Wang J, Yuan Y, Zhang W, Guan W, Wu Z et al. Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26. Nucleic Acids Res 2010; 38: 6544–6554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yadavilli S, Mayo LD, Higgins M, Lain S, Hegde V, Deutsch WA . Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair 2009; 8: 1215–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER et al. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 2007; 26: 5029–5037.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X et al. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 2009; 35: 316–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou X, Hao Q, Liao J, Zhang Q, Lu H . Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 2013; 32: 388–396.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Wang W, Wang H, Wang MH, Xu W, Zhang R . Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 2013; 32: 2782–2791.

    Article  CAS  PubMed  Google Scholar 

  37. Xiong X, Zhao Y, He H, Sun Y . Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene 2011; 30: 1798–1811.

    Article  CAS  PubMed  Google Scholar 

  38. Sun XX, DeVine T, Challagundla KB, Dai MS . Interplay between ribosomal protein S27a and MDM2 protein in p53 activation in response to ribosomal stress. J Biol Chem 2011; 286: 22730–22741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horn HF, Vousden KH . Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 2008; 27: 5774–5784.

    Article  CAS  PubMed  Google Scholar 

  40. Miyazaki T, Liu Z, Kawahara A, Minami Y, Yamada K, Tsujimoto Y et al. Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc, and lck cooperate in hematopoietic cell proliferation. Cell 1995; 81: 223–231.

    Article  CAS  PubMed  Google Scholar 

  41. Pfeifer-Ohlsson S, Goustin A, Rydnert J, Wahlström T, Bjersing L, Stehelin D et al. Spatial and temporal pattern of cellular myc oncogene expression in developing human placenta: implications for embryonic cell proliferation. Cell 1984; 38: 585–596.

    Article  CAS  PubMed  Google Scholar 

  42. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436: 740–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haase AD, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Reports 2005; 6: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koscianska E, Starega-Roslan J, Krzyzosiak WJ . The role of Dicer protein partners in the processing of microRNA precursors. PLoS One 2011; 6: e28548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ota H, Sakurai M, Gupta R, Valente L, Wulff BE, Ariyoshi K et al. ADAR1 forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing. Cell 2013; 153: 575–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 2013; 152: 453–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bursac S, Brdovcak MC, Pfannkuchen M, Orsolic I, Golomb L, Zhu Y et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc Natl Acad Sci USA 2012; 109: 20467–20472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS et al. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 2010; 18: 231–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Golomb L, Bublik DR, Wilder S, Nevo R, Kiss V, Grabusic K et al. Importin 7 and exportin 1 link c-Myc and p53 to regulation of ribosomal biogenesis. Mol Cell 2012; 45: 222–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu H . A ribosomal tactic to halt cancer. Nat Med 2011; 17: 930–931.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Lu H . Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009; 16: 369–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang Q, Xiao H, Chai SC, Hoang QQ, Lu H . Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem 2011; 286: 38264–38274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Y, Zeng SX, Sun XX, Lee H, Blattner C, Xiao Z et al. MDMX promotes proteasomal turnover of p21 at G1 and early S phases independently of, but in cooperation with, MDM2. Mol Cell Biol 2008; 28: 1218–1229.

    Article  CAS  PubMed  Google Scholar 

  54. Zeng SX, Dai MS, Keller DM, Lu H . SSRP1 functions as a co-activator of the transcriptional activator p63. EMBO J 2002; 21: 5487–5497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liao JM, Lu H . Autoregulatory suppression of c-Myc by miR-185-3p. J Biol Chem 2011; 286: 33901–33909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jin Y, Dai MS, Lu SZ, Xu Y, Luo Z, Zhao Y et al. 14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO J 2006; 25: 1207–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun XX, Dai MS, Lu H . Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem 2008; 283: 12387–12392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Karen Vousden for providing us with the RPL11 mutant plasmid, Mu-shui Dai for offering some reagents and Shelya X Zeng as well as other members of the Lu laboratory for advices and active discussion. This work was supported in part by National Institutes of Health (NIH)-National Cancer Institute (NCI) grants CA095441, CA079721, CA129828 and CA172468 to H.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Lu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, JM., Zhou, X., Gatignol, A. et al. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex. Oncogene 33, 4916–4923 (2014). https://doi.org/10.1038/onc.2013.430

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.430

Keywords

This article is cited by

Search

Quick links